Skip to main content

Biological Variability of HIV-1

  • Chapter
AIDS Pathogenesis

Part of the book series: Immunology and Medicine Series ((IMME,volume 28))

  • 64 Accesses

Abstract

HIV-1 displays one of the highest evolutionary rates detected in any life form with genetic distances in hypervariable regions of the genome reaching as high as 10–15% within single individuals. This extreme variation is the result of an error-prone reverse transcriptase, high population turnover, viral proteins that accept high variation, and strong environmental selective pressures [1–5]. Thus, the reverse transcriptase enzyme, which lacks proof reading capacity, has a misincorporation rate of 10−4 to 10−5 per base or approximately one misincorporation per genome per replication cycle [1,2]. Furthermore, it has been estimated that up to 1010 virus particles are produced every day in an HIV-1-infected individual [3–5]. Consequently, an HIV1-infected individual harbours a swarm of closely related viruses [6]. Importantly, the genetic variation of HIV-1 translates into biological variation, such as cell tropism, virulence, and sensitivity to neutralizing antibodies and antiviral drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Preston, B.D., Poiesz, B.J. and Loeb, L.A.: Fidelity of HIV-1 reverse transcriptase, Science 242 (1988), 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts, J.D., Bebenek, K. and Kunkel, T.A.: The accuracy of reverse transcriptase from HIV-1, Science 242 (1988), 1171–1173.

    Article  PubMed  CAS  Google Scholar 

  3. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S. and Shaw, G.M.: Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373 (1995), 117–122.

    Article  PubMed  CAS  Google Scholar 

  4. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M. and Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature 373 (1995), 123–126.

    Article  PubMed  CAS  Google Scholar 

  5. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. and Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), 1582–1586.

    Article  PubMed  CAS  Google Scholar 

  6. Meyerhans, A., Cheynier, R., Albert, J., Seth, M., Kwok, S., Sninski, J., Morfeldt-Mâansson, L., Asjö, B. and Wain-Hobson, S.: Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations, Cell 58 (1989), 901–910.

    Article  PubMed  CAS  Google Scholar 

  7. Asjö, B. Morfeldt-M$nsson, L., Albert, J., Biberfeld, G., Karlsson, A., Lidman, K. and Fenyö, E.M.: Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection, Lancet ii (1986), 660–662.

    Google Scholar 

  8. Fenyö, E.M., Morfeldt-Mânsson, L., Chiodi, F., Lind, B., von Gegerfelt, A., Albert, J. Olausson, E. and Asjö, B.: Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates, J. Virol. 62 (1988) 4414–4419.

    Google Scholar 

  9. Lu,W. and Andrieu, J.M.: Similar replication capacities of primary human immunodeficiency virus type 1 isolates derived from a wide range of clinical sources, J. Virol. 66 (1992), 334–340.

    Google Scholar 

  10. Asjö, B., Sharma, U.K., Morfeldt-Mânsson, L., Magnusson, A., Barkhem, T., Albert, J., Olausson, E., von Gegerfelt, A., Lind, B., Biberfeld, P. and Fenyö, E.M.: Naturally occurring HIV-1 isolates with differences in replicative capacity are distinguished by in-situ hybridization of infected cells, AIDS Res. Human Retrovir. 6 (1990), 1177–1182.

    Article  Google Scholar 

  11. Connor, R.I., Mohri, H., Cao, Y. and Ho, D.D.: Increased viral burden and cytopathicity correlate temporally with CD4’ T-lymphocyte decline and clinical progression in human immunodeficiency virus type-l-infected individuals, J. Virol. 67 (1993), 1772–1777.

    PubMed  CAS  Google Scholar 

  12. Van ‘t Wout, A.B., Blaak, H., Ran, L.J., Brouwer, M., Kuiken, C. and Schuitemaker, H.: Evolution of syncytium-inducing and non-syncytium-inducing biological virus clones in relation to replication kinetics during the course of human immunodeficiency virus type-1 infection, J. Virol. 72 (1998), 5099–5107.

    Google Scholar 

  13. Tersmette, M., de Goede, R.E.Y., Al, B.J.M., Winkler, I.N., Gruters, R.A., Cuypers, H.T.M., Huisman, J.G. and Miedema, F.: Differential syncytium-inducing capacity of human immunodeficiency virus isolates: Frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex, J. Virol. 62 (1988), 2026–2032.

    PubMed  CAS  Google Scholar 

  14. Tersmette, M., Gruters, R.A., de Wolf, F., de Goede, R.E.Y., Lange, J.M.A., Schellekens, P.Th.A., Goudsmit, J., Huisman, J.G. and Miedema, F.: Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates, J. Virol. 63 (1989), 2118–2125.

    PubMed  CAS  Google Scholar 

  15. Schuitemaker, H., Kootstra, N.A., de Goede, R.E.Y., de Wolf, F., Miedema, F. and Tersmette, M.: Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary Tcell culture, J. Virol. 65 (1991), 356–363.

    PubMed  CAS  Google Scholar 

  16. Cheng-Mayer, C., Homsy, J., Evans, L.A. and Levy, L.A.: Identification of human immunodeficiency virus subtypes with distinct patterns of sensitivity to serum neutralization, Proc. Natl. Acad. Sci. USA 85 (1988), 2815–2819.

    Article  PubMed  CAS  Google Scholar 

  17. Gendelman, H.E., Orenstein, J.M., Baca, L.M., Weiser, B., Burger, H., Kalter, D. and Meltzer, M.S.: The macrophage in the persistence and pathogenesis of HIV infection, AIDS 3 (1989), 475495.

    Google Scholar 

  18. Collman, R., Hassan, N.F., Walker, R., Godfrey, B., Cutilli, J., Hastings, J.C., Friedman, H., Douglas, S.D. and Nathanson, N.: Infection of monocyte-derived macrophages with human immunodeficiency virus type 1 (HIV-1). Monocyte-tropic and lymphocyte-tropic strains of HIV-1 show distinctive patterns of replication in a panel of cell types, J. Exp. Med. 170 (1989), 11491163.

    Google Scholar 

  19. von Briesen, H., Andreesen, R. and Rubsamen-Waigmann, H.: Systematic classification of HIV subtypes on lymphocytes and monocytes/macrophages, Virology 178 (1990), 597–602.

    Article  Google Scholar 

  20. Kozak, S.L., Platt, E.J., Madani, N., Ferro Jr., F.E., Peden, K. and Kabat, D.: CD4, CXCR-4, and CCR-5 dependencies for infections by primary patient and laboratory-adapted isolates of human immunodeficiency virus type 1, J Virol. 71 (1997), 873–882.

    PubMed  CAS  Google Scholar 

  21. Valentin, A., Albert, J., Fredriksson, R., Fenyö, E.M. and Asjö, B.: Dual tropism for lymphocytes and mononuclear phagocytes is a common feature of primary HIV-1 and HIV-2 isolates, J. Virol. 68 (1994), 6684–6689.

    PubMed  CAS  Google Scholar 

  22. Connor, R.I. and Ho, D.D.: Human immunodeficiency virus type-1 variants increased replicative capacity develop during the asymptimatic stage before disease progression, J. Virol. 68 (1994), 4400–4408.

    PubMed  CAS  Google Scholar 

  23. Stent, G., Joo, G.B., Kierulf, P. and Asjö, B.: Macrophage tropism: fact or fiction?, J. Leukocyte Biol. 62 (1997), 4–11.

    PubMed  CAS  Google Scholar 

  24. Moore, J.P., Cao, Y., Qing, L., Sattentau, Q.J., Pyati, J., Koduri, R., Robinson, J., Barbas, C.F.3, Burton, D.R. and Ho, D.D.: Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120, J. Virol. 69 (1995) 101–109.

    Google Scholar 

  25. Sullivan, N., Sun, Y., Li, J., Hofmann, W. and Sodroski, J.: Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates, J. Virol. 69 (1995), 4413–4422.

    PubMed  CAS  Google Scholar 

  26. Koot, M., Vos, A.H., Keet, I.P.M., de Goede, R.E.Y., Dercksen, M.W., Terpstra, F.G., Coutinho, R.A., Miedema, F. and Tersmette, M.: HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay, AIDS 6 (1992), 49–54.

    Article  PubMed  CAS  Google Scholar 

  27. Scarlatti, G., Hodara, V., Rossi, P., Muggiasca, L., Bucceri, A., Albert, J. and Fenyö, E.M.: Transmission of human immunodeficiency virus type 1 from mother to child correlates with viral phenotype, Virology 197 (1993), 624–629.

    Article  PubMed  CAS  Google Scholar 

  28. Fiore, J., Bjömdal, A., Aperia-Peipke, K., Di Stefano, M., Angarano, G., Pastore, G., Gaines, H., Fenyö, E.M. and Albert, J.: The biological phenotype of HIV-1 is usually preserved during and after sexual transmission, Virology 204 (1994), 297–303.

    Article  PubMed  CAS  Google Scholar 

  29. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P.D., Wu, L., Mackay, C.R., LaRosa, G., Newman, W., Gerard, N., Gerard, C. and Sodroski, J.: The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates, Cell 85 (1996), 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  30. Doranz, B.J., Rucker, J., Yi, Y.J., Smyth, R.J., Samson, M., Peiper, S.C., Parmentier, M., Collman, R.G. and Doms, R.W.: A dual-tropic primary HIV-1 isolate that uses fusin and the betachemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors, Cell 85 (1996), 11491158.

    Google Scholar 

  31. Dragic, R., Litwin, V., Allaway, G.P., Martin, S.R., Huang, Y.X., Nagashima, K.A., Cayanan, C., Maddon, P.J., Koup, R.A., Moore, J.P. and Paxton, W.A.: HIV-1 entry into CD4’ cells is mediated by the chemokine receptor CC-CKR-5, Nature 381 (1996), 667–673.

    Article  PubMed  CAS  Google Scholar 

  32. Alkhatib, G., Combadiere, C., Broder, C.C., Feng, Y., Kennedy, P.E., Murphy, P.M. and Berger, E.A.: CC-CKR5: a RANTES, MIP-1 alpha, MIP-Ibeta receptor as a fusion cofactor for macrophage-tropic HIV-1, Science 272 (1996), 1955–1958.

    Article  PubMed  CAS  Google Scholar 

  33. Feng, Y., Broder, C.C., Kennedy, P.E. and Berger, E.A.: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science 272 (1996), 872–877.

    Article  PubMed  CAS  Google Scholar 

  34. Simmons, G., Wilkinson, D., Reeves, J.D., Dittmar, M.T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P.W., Weiss, R.A. and Clapham, P.R.: Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either lestr or CCR5 as coreceptors for virus entry, J. Virol. 70 (1996), 8355–8360.

    PubMed  CAS  Google Scholar 

  35. Zhang, L., Huang, Y., He, T., Cao, Y. and Ho, D.D.: HIV-1 subtype and second-receptor use, Nature 383 (1996), 768.

    Article  PubMed  CAS  Google Scholar 

  36. Bjömdal, A., Deng, H., Jansson, M., Fiore, J.R., Colognesi, C., Karlsson, A., Albert, J., Scarlatti, G., Littman, D.R. and Fenyö, E.M.: Co-receptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype, J Virol. 71 (1997), 7478–7487.

    Google Scholar 

  37. Tscherning, C., Alaeus, A., Fredriksson, R., Bjömdal, A., Deng, H.K., Littman, D.R., Fenyö, E.M. and Albert, J.: Differences in chemokine coreceptor usage between genetic subtypes of HIV-1, Virology 241 (1998), 181–188.

    Article  PubMed  CAS  Google Scholar 

  38. Jansson, M., Popovic, M., Karlsson, A., Cocchi, F., Rossi, P., Albert, J. and Wigzell, H.: Sensitivity to inhibition by a-chemokines correlates with biological phenotype of primary human immunodeficiency virus type 1 isolates, Proc. Natl. Acad. Sci. USA 93 (1996), 15382–15387.

    Article  PubMed  CAS  Google Scholar 

  39. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.L., Arenzanaseisdedos, F., Schwartz, O., Heard, J.M., Clarklewis, I., Legler, D.F., Loetscher, M., Baggiolini, M. and Moser, B.: The CXC chemokine SDF-1 is the ligand for lestr/fusin and prevents infection by T-cell-line-adapted HIV-1, Nature 382 (1996), 833–835.

    Article  PubMed  CAS  Google Scholar 

  40. Bleui, Cr., Farzan, M., Choe, H., Parolin, C., Clarklewis, I., Sodroski, J. and Springer, T.A.: The lymphocyte chemoattractant SDF-1 is a ligand for lestr/fusin and blocks HIV-1 entry, Nature 382 (1996), 829–833.

    Article  Google Scholar 

  41. Bleui, C.C., Wu, L., Hoxie, J.A., Springer, T.A. and Mackay, C.R.: The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes, Proc. Natl. Acad. Sci. USA 94 (1997), 1925–1930.

    Article  Google Scholar 

  42. McKnight, A., Wilkinson, D., Simmons, G., Talbot, S., Picard, L., Ahuja, M., Marsh, M., Hoxie, J.A. and Clapham, P.R.: Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell-type-and -strain-dependent, J. Virol. 71 (1997), 1692–1696.

    PubMed  CAS  Google Scholar 

  43. Wu, L., Paxton, W.A., Kessam, N., Ruffing, N., Rottman, J.B., Sullivan, N., Choe, H., Sodroski, J., Newman, W., Koup, R.A. and Mackay, C.R.: CCR5 levels and expression patterns correlate with infectability by macrophage-tropic HIV-1, in vitro, J. Exp. Med. 185 (1997), 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  44. Cheng-Mayer, C., Liu, R., Landau, N.R. and Stamatatos, L.: Macrophage tropism of human immunodeficiency virus type 1 and utilization of the CC-CKR5 coreceptor, J. Virol. 71 (1997), 1657–1661.

    PubMed  CAS  Google Scholar 

  45. Berger, E.A., Doms, R.W., Fenyö, E.M., Korber, B.T., Littman, D.R., Moore, J.P., Sattentau, Q.J., Schuitemaker, H., Sodroski, J. and Weiss, R.A.: A new classification for HIV-1, Nature 391 (1998), 240.

    Article  PubMed  CAS  Google Scholar 

  46. O’Brien, W.A., Koyanagi, Y., Namazie, A., Zhao, J.Q., Diagne, A., Idler, K., Zack, J.A. and Chen, I.S.Y.: HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain, Nature 348 (1990), 69–73.

    Article  PubMed  Google Scholar 

  47. Shioda, T., Levy, J.A. and Cheng-Mayer, C.: Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene, Nature 349 (1991), 167–169.

    Article  PubMed  CAS  Google Scholar 

  48. Fouchier, R.A., Groenink, M., Kootstra, N.A., Tersmette, M., Huisman, J.G., Miedema, F. and Schuitemaker, H.: Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule, J. Virol. 66 (1992), 3183–3187.

    PubMed  CAS  Google Scholar 

  49. De Jong, J.J., De Ronde, A., Keulen, W., Tersmette, M. and Goudsmit, J.: Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution, J. Virol. 66 (1992), 6777–6780.

    PubMed  Google Scholar 

  50. Cocchi, F., De Vico, A.L., Garzino-Demo, A., Cara, A., Gallo, R.C. and Lusso, P.: The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection, Nature Med. 2 (1996), 1244–1247.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, L.J., Gerard, N.P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A.A., Desjardin, E., Newman, W., Gerard, C. and Sodroski, J.: CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5, Nature 384 (1996), 179–183.

    Article  PubMed  CAS  Google Scholar 

  52. Speck, R.F., Wehrly, K., Platt, E.J., Atchison, R.E., Charo, I.F., Kabat, D., Chesebro, B. and Goldsmith, M.A.: Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop, J. Virol. 71 (1997), 7136–7139.

    PubMed  CAS  Google Scholar 

  53. Groenink, M., Fouchier, R.A.M., Broersen, S., Baker, C.H., Koot, M., van ‘t Wout, A.B., Huisman, J.G., Miedema, F., Tersmette, M. and Schuitemaker, H.: Relation of phenotype evolution of HIV-1 to envelope V2 configuration, Science 260 (1993), 1513–1516.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, N., Zhu, T. and Ho, D.D.: Sequence diversity of VI and V2 domains of gp120 from human immunodeficiency virus type 1: lack of correlation with viral phenotype, J. Virol. 69 (1995), 27082715.

    Google Scholar 

  55. Comelissen, M., Hogervorst, E., Zorgdrager, F., Hartman, S. and Goudsmit, J.: Maintenance of syncytium-inducing phenotype of HIV type 1 is associated with positively charged residues in the HIV type 1 gp120 V2 domain without fixed positions, elongation, or relocated N-linked glycosylation sites, AIDS Res. Human Retrovir. 11 (1995), 1169–1175.

    Article  Google Scholar 

  56. Fouchier, R.A.M., Broersen, S.M., Brouwer, M., Tersmette, M., Van ‘t Wout, A.B., Groenink, M. and Schuitemaker, H.: Temporal relationship between elongation of the HIV type-1 glycoprotein 120 V2 domain and the conversion toward a syncytium-inducing phenotype, AIDS Res. Human Retrovir. 11 (1995), 1473–1478.

    Article  CAS  Google Scholar 

  57. Schuitemaker, H., Fouchier R.A.M., Broersen, S.M., Groenink, M., Koot, M., Van ‘t Wout, A.B., Huisman, J.G., Tersmette, M. and Miedema, F.: Envelope V2 configuration and HIV-1 phenotype: Clarification, Science 268 (1995), 115.

    Article  PubMed  CAS  Google Scholar 

  58. Myers, G., Korber, B., Foley, B., Jeang, K.-T., Mellors, J.W. and Wain-Hobson, S.: Human retroviruses and AIDS 1996: A compilation and analysis of nucleic acid and amino acid sequences. Theoretical Biology and Biophysics Group T10, Los Alamos National Laboratory, Los Alamos, New Mexico, USA., 1996.

    Google Scholar 

  59. Soto-Ramirez, L.E., Renjifo, B., McLane, M.F., Marlink, R., O’Hara, C., Sutthen, R., Wasi, C., Vithayasai, P., Vithayasai, V., Apichartpiyakul, C., Auewarakul, P., Pena Cruz, V., Chui, D.S., Osathanondh, R., Mayer, K., Lee, T.H. and Essex, M.: HIV-1 Langerhans’ cell tropism associated with heterosexual transmission of HIV, Science 271 (1996), 1291–1293.

    Article  PubMed  CAS  Google Scholar 

  60. Pope, M., Frankel, S.S., Mascola, J.R., Trkola, A., Isdell, F., Birx, D.L., Burke, D.S., Ho, D.D. and Moore, J.P.: Human immunodeficiency virus type I strains of subtypes B and E replicate in cutaneous dendritic cell T-cell mixtures without displaying subtype-specific tropism, J. Virol .71 (1997) 8001–8007.

    Google Scholar 

  61. Dittmar, M.T., Simmons, G., Hibbitts, S., Ohare, M., Louisirirotchanakul, S., Beddows, S., Weber, J., Clapham, P.R. and Weiss, R.A.: Langerhans cell tropism of human immunodeficiency virus type 1 subtype A through F isolates derived from different transmission groups, J. Virol. 71 (1997), 80088013.

    Google Scholar 

  62. de Wolf, F., Hogervorst, E., Goudsmit, J., Fenyö, E.M., Rubsamen-Waigmann, H., Holmes, H., Galvao-Castro, B., Karita, E., Wasi, C., Sempala, S.D.K., Baan, E., Zorgdrager, F., Lukasov, V., Osmanov, S., Kuiken, K., Comelissen, M., the WHO Network for HIV Isolation.: Syncytiuminducing and non-syncytium-inducing capacity of human immunodeficiency type 1 subtypes other than B: phenotypic and genotypic characteristics, AIDS Res. Human Retrovir. 10 (1994), 1387–1400.

    Article  Google Scholar 

  63. Tersmette, M., Gruters, R.A., de Wolf, F., de Goede, R.E.Y., Lange, J.M.A., Schellekens, P.Th.A., Goudsmit, J., Huisman, J.G. and Miedema, F.: Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates, J. Virol. 63 (1989), 2118–2125.

    PubMed  CAS  Google Scholar 

  64. Cheng-Mayer, C., Seto, D., Tateno, M. and Levy, J.A.: Biological features of HIV-1 that correlate with virulence in the host, Science 240 (1988), 80–82.

    Article  PubMed  CAS  Google Scholar 

  65. Koot, M., Keet, LP.M., Vos, A.H., de Goede, R.E.Y., Roos, M.Th.L., Coutinho, R.A., Miedema, F., Schellekens, P.Th.A. and Tersmette, M.: Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4` cell depletion and progression to AIDS, Ann. Intern. Med. 118 (1993), 681–688.

    PubMed  CAS  Google Scholar 

  66. Karlsson, A., Parsmyr, K., Sandström, E., Fenyö, E.M. and Albert, J.: MT-2 cell tropism as a prognostic marker for disease progression in HIV-1 infection, J. Clin. Microbiol. 32 (1994), 364–370.

    PubMed  CAS  Google Scholar 

  67. Richman, D.D., and Bozzette, S.A.: The impact of the syncytium-inducing phenotype of human immunodeficeny virus on disease progression, J. Infect. Dis. 169 (1994), 968–974.

    CAS  Google Scholar 

  68. Nielsen, C., Pedersen, C., Lundgren, J.D. and Gerstoft, J.: Biological properties of HIV isolates in primary HIV infection: consequences for the subsequent course of infection, AIDS 7 (1993), 10351040.

    Google Scholar 

  69. Mellors, J.W., Rinaldo, C.R.J., Gupta, P., White, R.M., Todd, J.A. and Kingsley, L.A.: Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272 (1996), 1167–1170.

    Article  PubMed  CAS  Google Scholar 

  70. Koot, M., van ‘t Wout, A.B., Kootstra, N.A., de Goede, R.E.Y., Tersmette, M. and Schuitemaker, H.: Relation between changes in cellular load, evolution of viral phenotype, and the clonal composition of virus populations in the course of human immunodeficiency virus type 1 infection, J. Infect. Dis. 173 (1996), 349–354.

    Article  PubMed  CAS  Google Scholar 

  71. Blaak, H., de Wolf, F., van ‘t Wout, A.B., Pakker, N.G., Bakker, M., Goudsmit, J. and Schuitemaker, H.: Temporal relationship between human immunodeficiency virus type 1 RNA levels in serum and cellular infectious load peripheral blood, J. Infect. Dis. 176 (1997), 13831387.

    Google Scholar 

  72. Bratt, G., Karlsson, A., Leandersson, A.-C., Albert, J., Wahren, B. and Sandström, E.: Treatment history and baseline viral load, but not viral tropism or CCR5 genotype, influence prolonged efficacy of highly active antiretroviral treatment, AIDS 12 (1998), 2193–2202.

    Article  PubMed  CAS  Google Scholar 

  73. Kaneshima, H., Su, L., Bonyhadi, M.L., Connor, R.I., Ho, D.D. and McCune, J.M.: Rapid-high, syncytium-inducing isolates of human immunodeficiency virus type 1 induce cytopathicity in the human thymus of the SCID-hu mouse, J. Virol. 68 (1994), 8188–8192.

    PubMed  CAS  Google Scholar 

  74. Glushakova, S., Baibakov, B., Zimmerberg, J. and Margolis, L.B.: Experimental HIV infection of human lymphoid tissue: correlation of CD4’ T-cell depletion and virus syncytium-inducing/nonsyncytium-inducing phenotype in histocultures inoculated with laboratory strains and patient isolates of HIV type 1, AIDS Res. Human Retrovir. 13 (1997), 461–471.

    Article  CAS  Google Scholar 

  75. Schuitemaker, H., Koot, M., Koostra, N.A., Dercksen, M.W., de Goede, R.E.Y., van Steenwijk, R.P., Lange, J.M.A., Eeftinck Schattenkerk, J.K.M., Miedema, F. and Tersmette, M.: Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus populations, J. Virol. 66 (1992), 1354–1360.

    PubMed  CAS  Google Scholar 

  76. Scarlatti, G., Leitner, T., Hodara, V., Jansson, M., Karlsson, A., Wahlberg, J., Rossi, P., Uhlén, M., Fenyö, E.M. and Albert, J.: Interplay of HIV-1 phenotype and neutralizing antibody response in patho-genesis of AIDS, Immunol. Lett. 51 (1996), 23–28.

    Article  PubMed  CAS  Google Scholar 

  77. Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C., Farber, C.M., Saragosti, S., Lapoumeroulie, C., Cognaux,., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R.J., Collman, R.G. and Doms, R.W.: Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene: see comments, Nature 382 (1996), 722–725.

    Article  PubMed  CAS  Google Scholar 

  78. Dean, M., Carrington, M., Winkler, C., Huttley, G.A., Smith, M.W., Allikmets, R., Goedert, J.J., Buchbinder, S.P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R. and O’Brien, S.J.: Genetic restriction of HIV-I infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, A, Science 273 (1996), 1856–1862.

    Article  PubMed  CAS  Google Scholar 

  79. Bratt, G., Sandström, E., Albert, J., Samson, M. and Wahren, B.: The influence of MT-2 tropism on the prognostic implications of the 32 basepair deletion in the CCR5 gene, AIDS 11 (1997), 14151419.

    Google Scholar 

  80. de Roda Husman, A.M., Koot, M., Comelissen, M., Keet, I.P.M., Brouwer, M., Broersen, S.M., Bakker, M., Roos, M.Th.L., Prins, M., de Wolf, F., Coutinho, R.A., Miedema, F., Goudsmit, J. and Schuitemaker, H.: Association between CCR5 genotype and the clinical course of HIV-1 virus infection, Ann. Intern. Med. 127 (1997), 882–890.

    Google Scholar 

  81. McNeamey, T., Westervelt, P., Thielan, B.J., Trowbridge, D.B., Garcia, J., Whittier, R. and Ratner, L.: Limited sequence heterogeneity among biologically distinct human immunodeficiency virus type 1 isolates from individuals involved in a clustered infectious outbreak, Proc. Natl. Acad. Sci. USA 87 (1990), 1917–1921.

    Article  Google Scholar 

  82. Zhu, T., Mo, H. Wang, N., Nam, D.S., Cao, Y., Koup, R.A. and Ho, D.D.: Genotypic and phenotypic characterization of HIV-1 in patients with primary infection, Science 261 (1993), 11791181.

    Google Scholar 

  83. Zhang, L.Q., MacKenzie, P., Cleland, A., Holmes, E.C., Leigh Brown, A.J. and Simmonds, P.: Selection for specific sequences in the extemal envelope protein of human immunodeficiency virus type 1 upon primary infection, J. Virol. 67 (1993), 3345–3356.

    PubMed  CAS  Google Scholar 

  84. Van ‘t Wout, A.B., Kootstra, N.A., Mulder-Kampinga, G.A., Albrecht-van Lent, N., Scherpbier, H.J., Veenstra, J., Boer, K., Coutinho, R.A., Miedema, F. and Schuitemaker, H.: Macrophage-tropic variants initiate human immunodeficiency virus type-1 infection after sexual, parenteral and vertical transmission, J. Clin. Invest. 94 (1994), 2060–2067.

    Article  Google Scholar 

  85. Albert, J., Fiore, J., Fenyö, E.M., Pedersen, C., Lundgren, J.D., Gerstofl, J. and Nielsen, C.: Biological phenotype of HIV-1 and transmission (letter), AIDS 9 (1995), 822–823.

    Article  PubMed  CAS  Google Scholar 

  86. Koot, M., Schellekens, P.Th.A., Mulder, J.W., Lange, J.M.A., Roos, M.Th.L., Coutinho, R.A., Tersmette, M. and Miedema, F.: Viral phenotype and T-cell reactivity in human immunodeficiency virus type 1-infected asymptomatic men treated with zidovudine, J. Infect. Dis. 168 (1993), 733–736.

    Article  PubMed  CAS  Google Scholar 

  87. Karlsson, A., Parsmyr, K., Aperia, K., Sandsträm, E. and Albert, J.: MT-2 cell tropism and development of zidovudine and didanosine resistance in HIV-1-infected individuals, J. Infect. Dis. 170 (1994), 1367–1375.

    Article  PubMed  CAS  Google Scholar 

  88. Van ‘t Wout, A.B., De Jong, M.D., Kootstra, N.A., Veenstra, J., Lange, J.M.A., Boucher, C.A.B. and Schuitemaker, H.: Changes in cellular virus load and zidovudine resistance of syncytium-inducing and non-syncytium-inducing human immunodeficiency virus populations under zidovudine pressure: a clonal analysis, J. Infect. Dis. 174 (1996), 845–849.

    Article  Google Scholar 

  89. Van ‘t Wout, A.B., Ran, L.J., De Jong, M.D., Bakker, M., Van Leeuwen, R., Notermans, D.W., Loeliger, A.E., De Wolf, F., Danner, S.A., Reiss, P., Boucher, C.A.B., Lange, J.M.A. and Schuitemaker, H.: Selective inhibition of syncytium-inducing and non-syncytium-inducing HIV-1 variants in individuals receiving didanosine or zidovudine, respectively, J. Clin. Invest. 100 (1997), 2325–2332.

    Article  Google Scholar 

  90. Delforge, M.-L., Liesnard, C., Debaisieux, L., Tchetcheroff, M., Farber, C.-M. and Van Vooren, J.-P.: In-vivo inhibition of syncytium-inducing variants of HIV in patients treated with didanosine, AIDS 9 (1995), 89–101.

    Article  PubMed  CAS  Google Scholar 

  91. Zheng, N.N., McQueen, P.W., Hurren, L., Evans, L.A., Law, M.G., Forde, S., Barker, S. and Cooper, D.A.: Changes in biologic phenotype of human immunodeficiency virus during treatment of patients with didanosine, J. Infect. Dis. 173 (1995), 1092–1096.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albert, J., Koot, M. (2000). Biological Variability of HIV-1. In: Schuitemaker, H., Miedema, F. (eds) AIDS Pathogenesis. Immunology and Medicine Series, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0685-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0685-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5407-4

  • Online ISBN: 978-94-017-0685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics