Skip to main content

Aging in C. elegans

  • Chapter
Aging of Organisms

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 4))

  • 286 Accesses

Abstract

In the last decade of the 20th century one model organism has received more attention from gerontologists than any other, namely the free-living soil nematode Caenorhabditis elegans (C. elegans). We owe much of our general view of the genetic determination of lifespan to this organism. C. elegans became a popular organism for the analysis of complex biological problems following the pioneering work of Sidney Brenner and Sir John Sulston who determined the developmental cellular fate map [1]. It is also noted for the early work of Robert Horvitz and colleagues who used the cell lineage map to begin a genetic dissection of programmed cell death [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenner S (1988). In: Wood W, ed. The Nematode Caenorhabditis elegans. New York: CSHL Press, pp. ix-xiii.

    Google Scholar 

  2. Metzstein MM, Stanfied GM, Horvitz HR (1998). Genetics of programmed celldeath in C. elegans: past, present and future. Trends Genet. 14: 410–16.

    PubMed  CAS  Google Scholar 

  3. Johnson TE, Wood WB (1982). Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci USA 79: 6603–7.

    PubMed  CAS  Google Scholar 

  4. Klass MR (1983). A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initialresults. Mech Ageing Dev. 22: 279–86.

    PubMed  CAS  Google Scholar 

  5. Friedman DB, Johnson TE (1988). A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 118: 75–86.

    PubMed  CAS  Google Scholar 

  6. Friedman DB, Johnson TE (1988). Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol. 43: B102–9.

    PubMed  CAS  Google Scholar 

  7. Johnson TE (1990). Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249: 908–12.

    PubMed  CAS  Google Scholar 

  8. Johnson TE (2002). A personalretrospective on the genetics of aging. Biogerontology 3: 7–12.

    PubMed  CAS  Google Scholar 

  9. Brenner S (1974). The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

    PubMed  CAS  Google Scholar 

  10. Anderson P (1995). Mutagenesis. Methods Cell Biol. 48: 31–58.

    PubMed  CAS  Google Scholar 

  11. Fire A, Albertson D, Harrison SW, Moerman DG (1991). Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113: 503–14.

    PubMed  CAS  Google Scholar 

  12. Gems D, Riddle DL (2000). Genetic, behavioraland environmentaldeterminants of male longevityin Caenorhabditis elegans. Genetics 154: 1597–610.

    PubMed  CAS  Google Scholar 

  13. Klass M, Hirsh D (1976). Non-ageing developmentalvariant of Caenorhabditis elegans. Nature 260: 523–5.

    PubMed  CAS  Google Scholar 

  14. Riddle DL, Albert PS (1997). Genetic and environmentalregulation of dauer larva development. In: Riddle DL, BlumenthalT, Meyer BJ, Priess JR, eds. C. elegans II. New York: CSHP, pp. 739–68.

    Google Scholar 

  15. Anderson GL (1978). Responses of dauer larvae of Caenorhabditis elegans lNematoda: Rhabditidae) to thermalstress and oxygen deprivation. Canadian J Zoology 56: 1786–91.

    Google Scholar 

  16. Klass MR (1977). Aging in the nematode Caenorhabditis elegans: major biologicaland environmentalfactors influencing life span. Mech Ageing Dev. 6: 413–29.

    PubMed  CAS  Google Scholar 

  17. Lithgow GJ, White TM, Melov S, Johnson TE (1995). Thermotolerance and extended life span conferred by single-gene mutations and induced by thermalstress. Proc Natl Acad Sci USA 92: 7540–4.

    PubMed  CAS  Google Scholar 

  18. Brooks A, Lithgow GJ, Johnson TE (1994). Mortality rates in a genetically heterogeneous population of Caenorhabditis elegans. Science 263: 668–71.

    PubMed  CAS  Google Scholar 

  19. VaupelJW, Johnson TE, Lithgow GJ (1994). Rates of mortalityin populations of Caenorhabditis elegans. Science 266: 826.

    Google Scholar 

  20. Gems D (2000). An integrated theory of ageing in the nematode Caenorhabditis elegans. JAnat. 197 Pt 4: 521–8.

    Google Scholar 

  21. Michalski AI, Johnson TE, Cypser JR, Yashin AI (2001). Heating stress patterns in Caenorhabditis elegans longevity and survivorship. Biogerontology 2: 35–44.

    PubMed  CAS  Google Scholar 

  22. Yashin AI, Cypser JW, Johnson TE, Michalski AI, Boyko SI, Novoseltsev VN (2002). Heat shock changes the heterogeneity distribution in populations of Caenorhabditis elegans: does it tellus anything about the biologicalmechanism of stress response? J Gerontol A Biol Sci Med Sci. 57: B83–92.

    PubMed  Google Scholar 

  23. Carey JR, Liedo P, Orozco D, VaupelJW (1992). Slowing of mortality rates at older ages in large medfly cohorts. Science 258: 457–61.

    CAS  Google Scholar 

  24. Fukui HH, Xiu L, Curtsinger JW (1993). Slowing of age-specific mortality rates in Drosophila melanogaster. Exp Gerontol. 28: 585–99.

    PubMed  CAS  Google Scholar 

  25. Curtsinger JW, Fukui HH, Townsend DR, VaupelJW (1992). Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science 258: 461–3.

    CAS  Google Scholar 

  26. VaupelJW, Carey JR (1993). Compositionalinterpretations of medfly mortality. Science 260: 1666–7.

    Google Scholar 

  27. Fabian T, Johnson TE (1994). Production of age-synchronous mass cultures of Caenorhabditis elegans. JGerontol Biol Sci. 49: B145–56.

    CAS  Google Scholar 

  28. Bolanowski MA, Jacobson LA, RussellRL (1983). Quantitative measures of aging in the nematode Caenorhabditis elegans: II. Lysosomalhydrolases as markers of senescence. Mech Ageing Dev. 21: 295–319.

    CAS  Google Scholar 

  29. Bolanowski MA, RussellRL, Jacobson LA (1981). Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinalstudies of two behavioralparameters. Mech Ageing Dev. 15: 279–95.

    Google Scholar 

  30. Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002). Genetic analysis of tissue aging in Caenorhabditis elegans. A role for heat-shock factor and bacterialproliferation. Genetics 161: 1101–12.

    PubMed  CAS  Google Scholar 

  31. Herndon LA, Schmeissner PJ, Dudaronek JM, et al. (2002). Stochastic, genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419: 808–14.

    PubMed  CAS  Google Scholar 

  32. Guarente L, Kenyon C (2000). Genetic pathways that regulate ageing in modelorganisms. Nature 408: 255–62.

    PubMed  CAS  Google Scholar 

  33. Gems D, Partridge L (2001). Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev. 11: 287–92.

    PubMed  CAS  Google Scholar 

  34. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999). A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 13: 1438–52.

    CAS  Google Scholar 

  35. Dorman JB, Albinder B, Shroyer T, Kenyon C (1995). The age-1 and daf-2 genes function in a common pathway to controlthe lifespan of Caenorhabditis elegans. Genetics 141: 1399–406.

    PubMed  CAS  Google Scholar 

  36. Barsyte D, Lovejoy DA, Lithgow GJ (2001). Longevity and heavy metalresistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J. 15: 627–34.

    PubMed  CAS  Google Scholar 

  37. Adachi H, FujiwaraY, Ishii N (1998). Effects of oxygen on protein carbonyland aging in Caenorhabditis elegans mutants with long lage-1) and short lmev-1) life spans. J Gerontol A Biol Sci Med Sci. 53A: B240–4.

    CAS  Google Scholar 

  38. Malone EA, Inoue T, Thomas JH (1996). Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143: 1193–205.

    PubMed  CAS  Google Scholar 

  39. Fujiwara M, Ishihara T, Katsura I (1999). A novelWD40 protein, CHE-2, acts cell- autonomouslyin the formation of C. elegans sensory cilia. Development 126: 4839–48.

    PubMed  CAS  Google Scholar 

  40. Apfeld J, Kenyon C (1999). Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402: 804–9.

    PubMed  CAS  Google Scholar 

  41. Wicks SR, de Vries CJ, van Luenen HG, Plasterk RH (2000). CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev Biol. 221: 295–307.

    PubMed  CAS  Google Scholar 

  42. Vowels JJ, Thomas JH (1992). Genetic analysis of chemosensory controlof dauer formation in Caenorhabditis elegans. Genetics 130: 105–23.

    PubMed  CAS  Google Scholar 

  43. Starich TA, Herman RK, Kari CK, et al. (1995). Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139: 171–88.

    PubMed  CAS  Google Scholar 

  44. Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol. 117: 456–87.

    PubMed  CAS  Google Scholar 

  45. Lakowski B, Hekimi S (1996). Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272: 1010–13.

    PubMed  CAS  Google Scholar 

  46. Wong A, Boutis P, Hekimi S (1995). Mutations in the clk-1 gene of Caenorhabditis elegans affect developmentaland behavioraltiming. Genetics 139: 1247–59.

    PubMed  CAS  Google Scholar 

  47. Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999). CLK~ 1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J. 18: 1783–92.

    PubMed  CAS  Google Scholar 

  48. Jonassen T, Proft M, Randez-GilF, et al. (1998). Yeast Clk-1 homologue lCoq7/Cat5) is a mitochondrialprotein in coenzyme Q synthesis. JBiol Chem. 273: 3351–7.

    CAS  Google Scholar 

  49. Jonassen T, Larsen PL, Clarke CF (2001). A dietary source of coenzyme Q is essentialfor growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci USA 98: 421–6.

    PubMed  CAS  Google Scholar 

  50. Vajo Z, King LM, Jonassen T, et al. (1999). Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potentialimplications for aging. Mamm Genome 10: 1000–4.

    PubMed  CAS  Google Scholar 

  51. Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997). Structuraland functionalconservation of the Caenorhabditis elegans timing gene clk-1. Science 275: 980–3.

    PubMed  CAS  Google Scholar 

  52. Branicky R, ShibataY, Feng J, Hekimi S (2001). Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics 159: 997–1006.

    CAS  Google Scholar 

  53. Gorbunova V, Seluanov A (2002). CLK~ 1 protein has DNA binding activity specific to OlL) region of mitochondrialDNA. FEBS Lett. 516: 279–84.

    PubMed  CAS  Google Scholar 

  54. Larsen PL, Clarke CF (2002). Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295: 120–3.

    PubMed  CAS  Google Scholar 

  55. Ahmed S, Alpi A, Hengartner MO, Gartner A (2001). C. elegans RAD-5/CLK~ 2 defines a new DNA damage checkpoint protein. Curr Biol. 11: 1934–44.

    PubMed  CAS  Google Scholar 

  56. Benard C, McCright B, Zhang Y, Felkai S, Lakowski B, Hekimi S (2001). The C. elegans maternal-effect gene clk-2 is essentialfor embryonic development, encodes a protein homologous to yeast Te(2p and affects telomere length. Development 128: 4045–55.

    PubMed  CAS  Google Scholar 

  57. Lim CS, Mian IS, Dernburg AF, Campisi J (2001). C. elegans clk-2, a gene that limits life span, encodes a telomere length regulator similar to yeast telomere binding protein Te(2p. Curr Biol. 11: 1706–10.

    PubMed  CAS  Google Scholar 

  58. Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL (2000). daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmentalage in C. elegans. Genes Dev. 14: 1512–27.

    Google Scholar 

  59. Antebi A, Culotti JG, Hedgecock EM (1998). daf-12 regulates developmentalage and the dauer alternative in Caenorhabditis elegans. Development 125: 1191–205.

    Google Scholar 

  60. Snow MI, Larsen PL (2000). Structure and expression of daf-12: a nuclear hormone receptor with three isoforms that are involved in development and aging in Caenorhabditis elegans. Biochim Biophys Acta 1494: 104–16.

    PubMed  CAS  Google Scholar 

  61. Hsin H, Kenyon C (1999). Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399: 362–6.

    PubMed  CAS  Google Scholar 

  62. Swoboda P, Adler HT, Thomas JH (2000). The RFX type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 5: 411–21.

    PubMed  CAS  Google Scholar 

  63. Collet J, Spike CA, Lundquist EA, Shaw JE, Herman RK (1998). Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics 148: 187–200.

    PubMed  CAS  Google Scholar 

  64. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366: 461–4.

    PubMed  CAS  Google Scholar 

  65. Gems D, Sutton AJ, Sundermeyer ML, et al. (1998). Two pleiotropic classes of daf-2 mutation affect larvalarrest, adult behavior, reproduction, longevityin Caenorhabditis elegans. Genetics 150: 129–55.

    PubMed  CAS  Google Scholar 

  66. Apfeld J, Kenyon C (1998). Cellnonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95: 199–210.

    PubMed  CAS  Google Scholar 

  67. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–6.

    Google Scholar 

  68. Honda Y, Honda S (1999). The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEBJ. 13: 1385–93.

    CAS  Google Scholar 

  69. Scott BA, Avidan MS, Crowder CM (2002). Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296: 2388–91.

    PubMed  CAS  Google Scholar 

  70. Lee RY, Hench J, Ruvkun G (2001). Regulation of C. elegans DAF-16 and its human ortholog FKHR(1 by the daf-2 insulin-like signaling pathway. Curr Biol. 11: 1950–7.

    PubMed  CAS  Google Scholar 

  71. Lakowski B, Hekimi S (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95: 13091–6.

    PubMed  CAS  Google Scholar 

  72. Avery L (1993). The genetics of feeding in Caenorhabditis elegans. Genetics 133: 897–917.

    PubMed  CAS  Google Scholar 

  73. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002). Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295: 502–5.

    PubMed  CAS  Google Scholar 

  74. Kimble JE, White JG (1981). On the controlof germ celldevelopment in Caenorhabditis elegans. Dev Biol. 81: 208–19.

    PubMed  CAS  Google Scholar 

  75. Henderson ST, Gao D, Lambie EJ, Kimble J (1994). lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120: 2913–24.

    Google Scholar 

  76. Tax FE, Thomas JH, Ferguson EL, Horvitz HR (1997). Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics 147: 1675–95.

    PubMed  CAS  Google Scholar 

  77. Feng J, Bussiere F, Hekimi S (2001). Mitochondrialelectron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1: 633–44.

    PubMed  CAS  Google Scholar 

  78. Lundquist EA, Herman RK (1994). The mec-8 gene of Caenorhabditis elegans affects muscle and sensory neuron function and interacts with three other genes: unc-52, smu-1 and smu-2. Genetics 138: 83–101.

    PubMed  CAS  Google Scholar 

  79. Lundquist EA, Herman RK, Rogalski TM, Mullen GP, Moerman DG, Shaw JE (1996). The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. Development 122: 1601–10.

    PubMed  CAS  Google Scholar 

  80. Berkowitz LA, Strome S (2000). MES-1, a protein required for unequaldivisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development 127: 4419–31.

    PubMed  CAS  Google Scholar 

  81. Capowski EE, Martin P, Garvin C, Strome S (1991). Identification of grandchildless loci whose products are required for normalgerm-line development in the nematode Caenorhabditis elegans. Genetics 129: 1061–72.

    PubMed  CAS  Google Scholar 

  82. Tabish M, Siddiqui ZK, Nishikawa K, Siddiqui SS (1995). Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the externalenvironment. JMol Biol. 247: 377–89.

    CAS  Google Scholar 

  83. Bargmann CI, Hartwieg E, Horvitz HR (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74: 515–27.

    PubMed  CAS  Google Scholar 

  84. Thomas JH, Birnby DA, Vowels JJ (1993). Evidence for parallelprocessing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 134: 1105–17.

    PubMed  CAS  Google Scholar 

  85. Culotti JG, RussellRL (1978). Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90: 243–56.

    CAS  Google Scholar 

  86. Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, Strome S (1998). PGL-1, a predicted RNA-binding component of germ granules, is essentialfor fertilityin C. elegans. Cell 94: 635–45.

    PubMed  CAS  Google Scholar 

  87. Murakami S, Johnson TE (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143: 1207–18.

    PubMed  CAS  Google Scholar 

  88. Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S (1995). The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev. 9: 1074–86.

    PubMed  CAS  Google Scholar 

  89. Coburn CM, Mori I, Ohshima Y, Bargmann CI (1998). A cyclic nucleotide-gated channelinhibits sensory axon outgrowth in larvaland adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure. Development 125: 249–58.

    PubMed  CAS  Google Scholar 

  90. Richmond JE, Davis WS, Jorgensen EM (1999). UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 2: 959–64.

    PubMed  CAS  Google Scholar 

  91. Ailion M, Inoue T, Weaver CI, Holdcraft RW, Thomas JH (1999). Neurosecretory controlof aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 96: 7394–7.

    PubMed  CAS  Google Scholar 

  92. Ailion M, Thomas JH (2000). Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics 156: 1047–67.

    PubMed  CAS  Google Scholar 

  93. Ann K, Kowalchyk JA, Loyet KM, Martin TF (1997). NovelCa2’-binding protein lCAPS) related to UNC-31 required for Ca2’-activated exocytosis. J Biol Chem. 272: 19637–40.

    PubMed  CAS  Google Scholar 

  94. Avery L, Bargmann CI, Horvitz HR (1993). The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics 134: 455–64.

    PubMed  CAS  Google Scholar 

  95. Ogawa H, Harada S, SassaT, Yamamoto H, Hosono R (1998). Functionalproperties of the unc-64 gene encoding a Caenorhabditis elegans syntaxin. JBiol Chem. 273: 2192–8.

    CAS  Google Scholar 

  96. Saifee O, Wei L, Nonet ML (1998). The Caenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell 9: 1235–52.

    PubMed  CAS  Google Scholar 

  97. Desai C, Garriga G, McIntire SL, Horvitz HR (1988). A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336: 638–46.

    PubMed  CAS  Google Scholar 

  98. Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, Kimura Y (2000). Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun. 273: 431–6.

    PubMed  CAS  Google Scholar 

  99. Gregoire FM, Chomiki N, Kachinskas D, Warden CH (1998). Cloning and developmentalregulation of a novelmember of the insulin-like gene familyin Caenorhabditis elegans. Biochem Biophys Res Commun. 249: 385–90.

    PubMed  CAS  Google Scholar 

  100. Murakami S, Johnson TE (2001). The OLD-1 positive regulator of longevity and stress resistance is under DAF-16 regulation in Caenorhabditis elegans. Curr Biol. 11: 1517–23.

    PubMed  CAS  Google Scholar 

  101. Murakami S, Johnson TE (1998). Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr Biol. 8: 1091–4.

    PubMed  CAS  Google Scholar 

  102. Tissenbaum HA, Guarente L (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–30.

    PubMed  CAS  Google Scholar 

  103. Pierce SB, Costa M, Wisotzkey R, et al. (2001). Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 15: 672–86.

    PubMed  CAS  Google Scholar 

  104. Yokoyama K, Fukumoto K, Murakami T, et al. (2002). Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 lmortalin)/mthsp70/Grp75. FEBS Lett. 516: 53–7.

    PubMed  CAS  Google Scholar 

  105. Morris JZ, Tissenbaum HA, Ruvkun G (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–9.

    PubMed  CAS  Google Scholar 

  106. Clancy DJ, Gems D, Harshman LG, et al. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292: 104–6.

    PubMed  CAS  Google Scholar 

  107. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–10.

    PubMed  CAS  Google Scholar 

  108. Tatar M, Yin C (2001). Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol. 36: 723–38.

    PubMed  CAS  Google Scholar 

  109. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292: 288–90.

    PubMed  CAS  Google Scholar 

  110. Kapeller R, Cantley LC (1994). Phosphatidylinositol3-kinase. Bioessays 16: 565–76.

    PubMed  CAS  Google Scholar 

  111. Paradis S, Ruvkun G (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12: 2488–98.

    PubMed  CAS  Google Scholar 

  112. Lin K, Dorman JB, Rodan A, Kenyon C (1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–22.

    Google Scholar 

  113. Ogg S, Paradis S, Gottlieb S, et al. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–9.

    PubMed  CAS  Google Scholar 

  114. Ogg S, Ruvkun G (1998). The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2: 887–93.

    PubMed  CAS  Google Scholar 

  115. Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996). Control of C. elegans larvaldevelopment by neuronalexpression of a TGF-beta homolog. Science 274: 1389–91.

    PubMed  CAS  Google Scholar 

  116. Wolkow CA, Kimura KD, Lee MS and Ruvkun G (2000). Regulation of C. elegans lifespan by insulin like signaling in the nervous system. Science 290: 147–50.

    PubMed  CAS  Google Scholar 

  117. Dillin A, Crawford DK, Kenyon C (2002). Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298: 830–4.

    PubMed  CAS  Google Scholar 

  118. Babar P, Adamson C, Walker GA, Walker DW, Lithgow GJ (1999). P13-kinase inhibition induces dauer formation, thermotolerance and longevityin C. elegans. Neurobiol Aging 20: 513–19.

    PubMed  CAS  Google Scholar 

  119. Gerisch B, WeitzelC, Kober-Eisermann C, Rottiers V, Antebi A (2001). A hormonalsignaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1: 841–51.

    CAS  Google Scholar 

  120. Jia K, Albert PS, Riddle DL (2002). DAF-9, a cytochrome P450 regulating C. elegans larvaldevelopment and adult longevity. Development 129: 221–31.

    PubMed  CAS  Google Scholar 

  121. TroemelER (1999). Chemosensory signaling in C. elegans. Bioessays, 21: 1011–20.

    Google Scholar 

  122. Ahmed S, Hodgkin J (2000). MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans. Nature 403: 159–64.

    PubMed  CAS  Google Scholar 

  123. SohalRS, Weindruch R (1996). Oxidative stress, caloric restriction, and aging. Science 273: 59–63.

    Google Scholar 

  124. Tavernarakis N, DriscollM (2002). Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev. 123: 215–29.

    CAS  Google Scholar 

  125. Turturro A, Hass BS, Hart RW (2000). Does caloric restriction induce hormesis? Hum Exp Toxicol. 19: 320–9.

    PubMed  CAS  Google Scholar 

  126. Lithgow GJ, Walker GA (2002). Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev. 123: 765–71.

    PubMed  Google Scholar 

  127. Larsen PL (1993). Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 8905–9.

    PubMed  CAS  Google Scholar 

  128. Vanfleteren JR (1993). Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 292: 605–8.

    PubMed  CAS  Google Scholar 

  129. Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994). Thermotolerance of a longlived mutant of Caenorhabditis elegans. J Gerontol Biol Sci. 49: B270–6.

    CAS  Google Scholar 

  130. Walker GA, Walker DW, Lithgow GJ (1998). A relationship between thermotolerance and longevityin Caenorhabditis elegans. J1nvestig Dermatol Symp Proc. 3: 6–10.

    CAS  Google Scholar 

  131. Walker GA, Walker DW, Lithgow GJ (1998). Genes that determine both thermotolerance and rate of aging in Caenorhabditis elegans. Ann NYAcad Sci. 851: 444–9.

    CAS  Google Scholar 

  132. ParsellDA, Lindquist S (1994). Heat shock proteins and stress tolerance In: Morimoto RI, Tissieres A, Georgopoulos C, eds. The Biology of Heat Shock Proteins and Molecular Chaperones. New York: CSHL Press, pp. 457–94.

    Google Scholar 

  133. Walker GA, White TM, McCollG, et al. (2001). Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 56: B281–7.

    PubMed  CAS  Google Scholar 

  134. HalliwellB, Gutteridge JMC (1999). Free Radicals in Biology and Medicine, 3rd edn. Oxford: Oxford University Press.

    Google Scholar 

  135. Henderson ST, Johnson TE (2001). daf-16 integrates developmentaland environmentalinputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol. 11: 1975–80.

    Google Scholar 

  136. Lin K, Hsin H, Libina N, Kenyon C (2001). Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genetics 28: 139–45.

    PubMed  CAS  Google Scholar 

  137. Rattan SI (2000). Ageing, gerontogenes, and hormesis. 1ndian JExp Biol. 38: 1–5.

    CAS  Google Scholar 

  138. Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM (1998). Heat stress-induced life span extension in yeast. Exp Cell Res. 245: 379–88.

    PubMed  CAS  Google Scholar 

  139. Caratero A, Courtade M, Bonnet L, PlanelH, Caratero C (1998). Effect of a continuous gamma irradiation at a very low dose on the life span of mice. Gerontology 44: 272–6.

    CAS  Google Scholar 

  140. Maynard Smith J (1958). The effects of temperature and of egg-laying on the longevity of Drosophila subobscura. JExp Biol. 35: 832–43.

    Google Scholar 

  141. Cypser JR, Johnson TE (2002). Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. JGerontol A Biol Sci Med Sci. 57: B109–14.

    Google Scholar 

  142. Johnson TE, Hartman PS (1988). Radiation effects on life span in Caenorhabditis elegans. JGerontol. 43: B137–41.

    CAS  Google Scholar 

  143. Lithgow GJ (2001). Hormesis-a new hope for ageing studies or a poor second to genetics? Hum Exp Toxicol. 20: 301–3.

    PubMed  CAS  Google Scholar 

  144. Harman D (1956). Aging: a theory based on free radicaland radiation chemistry. J Gerontol Biol Sci. 11: 298–300.

    CAS  Google Scholar 

  145. SohalR (2002). Oxidative stress hypothesis of aging (1,2). Free Radic Biol Med. 33: 573.

    Google Scholar 

  146. Martin GM, Austad SN, Johnson TE (1996). Genetic analysis of ageing: role of oxidative damage and environmentalstresses. Nature Genetics 13: 25–34.

    PubMed  CAS  Google Scholar 

  147. Beckman KB, Ames BN (1998). The free radicaltheory of aging matures. Physiol Rev. 78: 547–81.

    PubMed  CAS  Google Scholar 

  148. Ishii N, Goto S, Hartman P (2002). Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic Biol Med. 33: 1021.

    PubMed  CAS  Google Scholar 

  149. Melov S, Ravenscroft J, Malik S, et al. (2000). Extension of life-span with superoxide dismutase/catalase mimetics. Science 289: 1567–9.

    PubMed  CAS  Google Scholar 

  150. Boveris A, Chance B (1973). The mitochondrialgeneration of hydrogen peroxide. Generalproperties and effect of hyperbaric oxygen. Biochem J. 134: 707–16.

    PubMed  CAS  Google Scholar 

  151. Beckman KB, Ames BN (1997). Oxidants, antioxidants and aging In: Scandalios JG, ed. Oxidative Stress and the Molecular Biology of Antioxidant Defences. New York: CSHL Press, pp. 201–46.

    Google Scholar 

  152. Battino M, Ferri E, Gorini A, et al. (1990). Naturaldistribution and occurrence of coenzyme Q homologues. Membr Biochem. 9: 179–90.

    PubMed  CAS  Google Scholar 

  153. Stadtman E (2002). Importance of individualityin oxidative stress and aging (1,2). Free Radic Biol Med. 33: 597.

    PubMed  CAS  Google Scholar 

  154. Richter C, Schweizer M (1997). Oxidative stress in mitochondria In: Scandalios JG, ed. Oxidative Stress and the Molecular Biology of Antioxidant Defences. New York: CSHL Press, pp. 169–200.

    Google Scholar 

  155. Levine RL, Stadtman ER (2001). Oxidative modification of proteins during aging. Exp Gerontol. 36: 1495–502.

    PubMed  CAS  Google Scholar 

  156. Brunk U, Terman A (2002). Lipofuscin: mechanisms of age-related accumulation and influence on cellfunction(1)(2). Free Radic Biol Med. 33: 611.

    PubMed  CAS  Google Scholar 

  157. Yan LJ, Levine RL, SohalRS (1997). Oxidative damage during aging targets mitochondrialaconitase. Proc Natl Acad Sci USA 94: 11168–72.

    CAS  Google Scholar 

  158. Yan LJ, SohalRS (1998). Mitochondrialadenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95: 12896–901.

    CAS  Google Scholar 

  159. Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, Goto S (1999). Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochem Biophys Res Commun. 264: 580–3.

    PubMed  CAS  Google Scholar 

  160. Beckman KB, Ames BN (1998). Mitochondrialaging: open questions. Ann NYAcad Sci. 854: 118–27.

    CAS  Google Scholar 

  161. Melov S, Hertz GZ, Stormo GD, Johnson TE (1994). Detection of deletions in the mitochondrialgenome of Caenorhabditis elegans. Nucleic Acids Res. 22: 1075–8.

    PubMed  CAS  Google Scholar 

  162. Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE (1995). Increased frequency of deletions in the mitochondrialgenome with age of Caenorhabditis elegans. Nucleic Acids Res. 23: 1419–25.

    PubMed  CAS  Google Scholar 

  163. Wei YH, Lee HC (2002). Oxidative stress, mitochondrialDNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med lMaywood) 227: 671–82.

    CAS  Google Scholar 

  164. Fridovich I (1995). Superoxide radical, superoxide dismutases. Annu Rev Biochem. 64: 97–112.

    PubMed  CAS  Google Scholar 

  165. Suzuki N, Inokuma K, Yasuda K, Ishii N (1996). Cloning, sequencing and mapping of a manganese superoxide dismutase gene of the nematode Caenorhabditis elegans. DNA Res. 3: 171–4.

    PubMed  CAS  Google Scholar 

  166. Hunter T, Bannister WH, Hunter GJ (1997). Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J Biol Chem. 272: 28652–9.

    PubMed  CAS  Google Scholar 

  167. Fujii M, Ishii N, Joguchi A, Yasuda K, Ayusawa D (1998). A novelsuperoxide dismutase gene encoding membrane-bound, extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res. 5: 25–30.

    PubMed  CAS  Google Scholar 

  168. Taub J, Lau JF, Ma C, et al. (1999). A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-and clk-1 mutants. Nature 399: 162–6.

    PubMed  CAS  Google Scholar 

  169. Blum J, Fridovich I (1983). Superoxide, hydrogen peroxide, and oxygen toxicityin two free-living nematode species. Arch Biochem Biophys. 222: 35–43.

    PubMed  CAS  Google Scholar 

  170. Darr D, Fridovich I (1995). Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic Biol Med. 18: 195–201.

    PubMed  CAS  Google Scholar 

  171. Di Mascio P, Murphy ME, Sies H (1991). Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am JClin Nutr. 53: 194S - 200S.

    Google Scholar 

  172. Viarengo A, Burlando B, Ceratto N, Panfoli I (2000). Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol. 46: 407–17.

    PubMed  CAS  Google Scholar 

  173. SohalRS (2002). Role of oxidative stress and protein oxidation in the aging process(1,2). Free Radic Biol Med. 33: 37–44.

    Google Scholar 

  174. Vanfleteren JR, Braeckman BP (1999). Mechanisms of life span determination in Caenorhabditis elegans. Neurobiol Aging 20: 487–502.

    PubMed  CAS  Google Scholar 

  175. Johnson TE, Cypser J, de Castro E, et al. (2000). Gerontogenes mediate health and longevityin nematodes through increasing resistance to environmentaltoxins and stressors. Exp Gerontol. 35: 687–94.

    PubMed  CAS  Google Scholar 

  176. Johnson TE, Henderson S, Murakami S, et al. (2002). Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J 1nherit Metab Dis. 25: 197–206.

    CAS  Google Scholar 

  177. Houthoofd K, Braeckman B, Lenaerts I, et al. (2002). Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans. Exp Gerontol. 37: 1015.

    PubMed  CAS  Google Scholar 

  178. Stenmark P, Grunler J, Mattsson J, Sindelar PJ, Nordlund P, Berthold DA (2001). A new member of the family of di-iron carboxylate proteins. Coq7 lclk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. JBiol Chem. 276: 33297–300.

    CAS  Google Scholar 

  179. Miyadera H, Kano K, Miyoshi H, Ishii N, Hekimi S, Kita K (2002). Quinones in longlived clk-1 mutants of Caenorhabditis elegans. FEBS Lett. 512: 33–7.

    PubMed  CAS  Google Scholar 

  180. Ishii N, Takahashi K, Tomita S, et al. (1990). A methylviologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res. 237: 165–71.

    PubMed  CAS  Google Scholar 

  181. Ishiguro H, Yasuda K, Ishii N, et al. (2001). Enhancement of oxidative damage to cultured cells and Caenorhabditis elegans by mitochondrialelectron transport inhibitors. 1UBMBLife 51: 263–8.

    CAS  Google Scholar 

  182. Senoo-Matsuda N, Yasuda K, Tsuda M, et al. (2001). A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormalenergy metabolism in Caenorhabditis elegans. JBiol Chem. 276: 41553–8.

    CAS  Google Scholar 

  183. Kayser EB, Morgan PG, Sedensky MM (1999). GAS-1: a mitochondrialprotein controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. Anesthesiology 90: 545–54.

    PubMed  CAS  Google Scholar 

  184. Kayser EB, Morgan PG, HoppelCL, Sedensky MM (2001). Mitochondrialexpression and function of GAS-1 in Caenorhabditis elegans. JBiol Chem. 276: 20551–8.

    CAS  Google Scholar 

  185. Scandalios JG (1997). Molecular genetics of superoxide dismutases in plants. In: Scandalios JG, ed. Oxidative Stress and the Molecular Biology of Antioxidant Defenses. New York: CSHL Press, pp. 527–68.

    Google Scholar 

  186. Harrington LA, Harley CB (1988). Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Ageing Dev. 43: 71–8.

    PubMed  CAS  Google Scholar 

  187. Adachi H, Ishii N (2000). Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 55: B280–5.

    PubMed  CAS  Google Scholar 

  188. Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, et al. (2002). Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol. 48: 725–31.

    PubMed  CAS  Google Scholar 

  189. Melov S (2002). Therapeutics against mitochondrialoxidative stress in animalmodels of aging. Ann NYAcad Sci. 959: 330–40.

    CAS  Google Scholar 

  190. Lander HM (1997). An essentialrole for free radicals and derived species in signaltransduction. FASEB J. 11: 118–24.

    PubMed  CAS  Google Scholar 

  191. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, FinkelT (2000). Role for mitochondrialoxidants as regulators of cellular metabolism. Mol Cell Biol. 20: 7311–18.

    CAS  Google Scholar 

  192. FinkelT, Holbrook NJ (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–47.

    Google Scholar 

  193. Martindale JL, Holbrook NJ (2002). Cellular response to oxidative stress: signaling for suicide and survival. JCell Physiol. 192: 1–15.

    CAS  Google Scholar 

  194. Patterson GI, Padgett RW (2000). TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet. 16: 27–33.

    PubMed  CAS  Google Scholar 

  195. Savage-Dunn C (2001). Targets of TGF beta-related signaling in Caenorhabditis elegans. Cytokine Growth Factor Rev. 12: 305–12.

    PubMed  CAS  Google Scholar 

  196. Yu H, Larsen PL (2001). DAF-16-dependent and independent expression targets of DAF-2 insulin receptor-like pathwayin Caenorhabditis elegans include FKBPs. J Mol Biol. 314: 1017–28.

    PubMed  CAS  Google Scholar 

  197. Cherkasova V, Ayyadevara S, Egilmez N, Shmookler RR (2000). Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. JMol Biol. 300: 433–48.

    CAS  Google Scholar 

  198. Kenyon C (2001). A conserved regulatory system for aging. Cell 105: 165–8.

    PubMed  CAS  Google Scholar 

  199. Montgomery MK, Fire A (1998). Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14: 255–8.

    PubMed  CAS  Google Scholar 

  200. Lund J, Tedesco P, Duke K, Wang J, Kim S, Johnson T (2002). Transcriptionalprofile of aging in C. elegans. Curr Biol. 12: 1566.

    PubMed  CAS  Google Scholar 

  201. HillAA, Hunter CP, Tsung BT, Tucker-Kellogg G, Brown EL (2000). Genomic analysis of gene expression in C. elegans. Science 290: 809–12.

    Google Scholar 

  202. Link CD (1995). Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92: 9368–72.

    PubMed  CAS  Google Scholar 

  203. Fay DS, Fluet A, Johnson CJ, Link CD (1998). 1n vivo aggregation of beta-amyloid peptide variants. JNeurochem. 71: 1616–25.

    Google Scholar 

  204. Link CD, Johnson CJ (2002). Reporter transgenes for study of oxidant stress in Caenorhabditis elegans. Methods Enzymol. 353: 497–505.

    PubMed  CAS  Google Scholar 

  205. Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD (2002). Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 99: 9439–44.

    PubMed  CAS  Google Scholar 

  206. Faber PW, Alter JR, MacDonald ME, Hart AC (1999). Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc Natl Acad Sci USA 96: 179–84.

    PubMed  CAS  Google Scholar 

  207. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, et al. (2000). Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97: 5750–5.

    PubMed  CAS  Google Scholar 

  208. Krobitsch S, Lindquist S (2000). Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97: 1589–94.

    PubMed  CAS  Google Scholar 

  209. Morley JF, BrignullHR, Weyers JJ, Morimoto RI (2002). The threshold for polyglutamine-expansion protein aggregation and ceular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 99: 10417–22.

    Google Scholar 

  210. Parker JA, Connoy JB, Wellington C, Hayden M, Dausset J, Neri C (2001). Expanded polyglutamines in Caenorhabditis elegans cause axonalabnormalities and severe dysfunction of PLM mechanosensory neurons without cedeath. Proc Natl Acad Sci USA 98: 13318–23.

    PubMed  CAS  Google Scholar 

  211. Nass R, HaDH, Mier DM III, Blakely RD (2002). Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99: 3264–9.

    CAS  Google Scholar 

  212. Rose MR (1991). Evolutionary Biology of Aging. New York: Oxford University Press.

    Google Scholar 

  213. Partridge L (2001). Evolutionary theories of ageing applied to long-lived organisms. Exp Gerontol. 36: 641–50.

    PubMed  CAS  Google Scholar 

  214. Chalesworth B (1980). Evolution in Age-Structured Populations. Cambridge: Cambridge University Press.

    Google Scholar 

  215. Medawar PB (1952). An Unsolved Problem of Biology. London: HK Lewis.

    Google Scholar 

  216. Hamiton WD (1966). The moulding of senescence by naturalselection. JTheor Biol. 12: 12–45.

    Google Scholar 

  217. Edney EB, GiRW (1968). Evolution of senescence and specific longevity. Nature 220: 281–2.

    CAS  Google Scholar 

  218. Wiiams GC (1957). Pleiotropy, naturalselection, and the evolution of senescence. Evolution 11: 398–411.

    Google Scholar 

  219. Kirkwood TB (2002). Evolution of ageing. Mech Ageing Dev. 123: 737–45.

    PubMed  Google Scholar 

  220. Johnson TE, Hutchinson EW (1993). Absence of strong heterosis for life span and other life history traits in Caenorhabditis elegans. Genetics 134: 465–74.

    PubMed  CAS  Google Scholar 

  221. Waker DW, McCo, G, Jenkins NL, Harris J, Lithgow GJ (2000). Evolution of lifespan in C. elegans. Nature 405: 296–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olsen, A., Sampayo, J.N., Lithgow, G.J. (2003). Aging in C. elegans . In: Osiewacz, H.D. (eds) Aging of Organisms. Biology of Aging and its Modulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0671-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0671-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6332-8

  • Online ISBN: 978-94-017-0671-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics