Skip to main content

Aging and Environmental Conditions in Insects

  • Chapter
Aging of Organisms

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 4))

  • 296 Accesses

Abstract

When we speak of insects as model systems for aging studies we first have to recognize that the number of insect species taken as model system up to now is remarkably low. In spite of the existence of about 1.2 million insect species not more than about 50 species were listed for their mean life-span in the classical report of Rockstein on insect aging in the seventies [1]. The situation does not have fundamentally changed since that time. A summary of the range of life-spans in adult insects for the major orders of Insecta together with arachnids was given as graph in a recent review on insect biodemography [2]. Longevity data in this table reach from several days in mayflies to decades in queen termites. In comparison with the 60-fold difference in the life-span of mammals adult insect’s life-span differences are much more pronounced reaching an up to 5000-fold difference. Carey however emphasized how difficult it is to speak on life-span in general and particular on life-span in insects. In contrast to life expectancy and age specific mortality which are explicit measurable values “life-span’’ is weakly defined as time after which no member of a given species can survive even under the most favorable conditions. “Maximum life-span potential” is another description. It is reasonable therefore that maximum life-span determination depends on the number of individuals under determination being higher when large numbers are observed. On the other hand longevity data obtained under laboratory conditions may have nothing to do with the same data recorded under free living conditions. The problem in general is further strengthened when maximum life-spans of ectothermic organisms as insects have to determined. Insects are extremely sensitive against abiotic factors like temperature, humidity or light regime. It is therefore meaningless — as Carey pointed out — “to consider life-span for any species without considering environmental, ecological and evolutionary contexts.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rockstein M, MiquelJ (1973). Aging in insects. In: Rockstein M, ed. The Physiology of 1nsecta. New York, London: Academic Press, pp. 371–478.

    Google Scholar 

  2. Carey JR (2000). Insect Biodemography. Ann Rev Entomol. 46: 79–110.

    Article  Google Scholar 

  3. Coatz KG (1997). Fifteen years of Phormia–on the value of an insect for the study of ageing. Arch Gerontol Geriatr. 25: 83–90.

    Article  Google Scholar 

  4. Loeb J, Northrop JH (1917). On the influence of food and temperature on the duration of life. J Biol Chem 32: 103–21.

    CAS  Google Scholar 

  5. Rubner M (1908). Das Problem der Lebensdauer und seine Beziehungen zu Wachstum und Ernährung, Munchen, Berlin, Oldenburg.

    Google Scholar 

  6. PearlR (1928). The Rate of Living. New York: Knopf.

    Google Scholar 

  7. SohalRS (1986). The rate of living theory: a contemporary interpretation. In: Coatz KG, Soha RS, eds. 1nsect Ageing. Berlin, Heidelberg, New York, Tokyo: Springer, pp. 23–44.

    Google Scholar 

  8. Sauer KP, Grüner C, Collatz KG (1986). Criticalpoints in time and their influence on life cycle. In: Collatz KG, SohalRS, eds. 1nsect Ageing. Berlin, Heidelberg, New York, Tokyo: Springer, pp. 9–22.

    Chapter  Google Scholar 

  9. Kirkwood TBL, Austadt SN (2000). Why do we age? Nature 408: 233–8.

    CAS  Google Scholar 

  10. Weismann A (1882). Ober die Dauer des Lebens. Jena: Fischer.

    Google Scholar 

  11. Finch CE (1990). Longevity, Senescence, and the Genome. Chigago and London: The University of Chicago Press.

    Google Scholar 

  12. Martinez DE (1998). Mortality patterns suggest lack of senescence in Hydra. Exp Gerontol. 33: 217–24.

    Article  PubMed  CAS  Google Scholar 

  13. Kirkwood TBL (1977). Evolution of ageing. Nature 270: 301–4.

    Article  PubMed  CAS  Google Scholar 

  14. Kirkwood TBL, Holliday R (1979). The evolution of ageing and longevity. Proc R Soc Lond Ser B. 205: 531–46.

    Article  CAS  Google Scholar 

  15. Stearns SC, Ackermann M, Doebeli M (1998). The experimentalevolution of ageing in fruitflies. Exp Gerontol. 33: 785–92.

    Article  PubMed  CAS  Google Scholar 

  16. Gasser M, Kaiser M, Berrigan D, Stearns SC (2000). Life-history correlates of evolution under high and low adult mortality. Evolution 54: 1260–72.

    PubMed  CAS  Google Scholar 

  17. LuckinbillLS (1993). Prospective and retrospective tests of evolutionary theories of senescence. Arch Gerontol Geriatr. 16: 17–32.

    Article  Google Scholar 

  18. Pletcher SD, Khazaeli AA, Curtsinger JW (2000). Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J Gerontol. 55: 381–9.

    Google Scholar 

  19. Buck S, Vettraino J, Force AG, Arking R (2000). Extended longevityin Drosophila is consistently associated with a decrease in developmentalvariability. J Gerontol. 55A: B292–301.

    Article  CAS  Google Scholar 

  20. Zhou HZ, Topp W (2000). Diapause and polyphenism of life-history of Lagria hirta. Entomol Exp Appl. 94: 201–10.

    Article  Google Scholar 

  21. Tatar M, Yin CM (2001). Slow ageing during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol. 36: 723–38.

    Article  PubMed  CAS  Google Scholar 

  22. Stoffolano JG (1974). Influence of diapause and diet on the development of the gonads and accessory reproductive glands of the black blowfly, Phormia regina lMeigen). Can J Zool. 52: 981–8.

    Article  PubMed  Google Scholar 

  23. Yin CM, Stoffolano Jr JG (1994). Endocrinology of vitellogenesis in blowflies. In: Davey KG, Peter RE, Tobe SS, eds. Perspectives in Comparative Endocrinology. Ottawa: NationalResearch Councilof Canada, pp. 291–8.

    Google Scholar 

  24. Yin CM, Stoffolano JG (1997). Juvenile hormone regulation of reproduction in the Cyclorrhapuos Diptera with emphasis on oogenesis. Arch 1nsect Biochem Physiol. 35: 513–37.

    Article  CAS  Google Scholar 

  25. Guarente L, Kenyon C (2000). Genetic pathways that regulate ageing in modelorganisms. Nature 408: 255–62.

    Article  PubMed  CAS  Google Scholar 

  26. Tatar M, Kopelman A, Epstein E, Tu MP, Yin CM, Garofalo RS (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–10.

    Article  PubMed  CAS  Google Scholar 

  27. Sheeba V, Sharma VK, Shubha K, Chandrashekaran MK, Joshi A (2000). The effect of different light regimes on adult life span in Drosophila melanogaster is partly mediated through reproductive output. JBiol Rhythm. 15: 380–92.

    Article  CAS  Google Scholar 

  28. Pittendrigh CS, Minis DH (1972). Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. PNAS. 69: 1537–9.

    Article  PubMed  CAS  Google Scholar 

  29. Saint PaulU (1978). Longevity among blowflies Phormia terraenovae R. D. kept in non-24-h light-dark cycle. J Comp Physiol A 127: 191–5.

    Article  Google Scholar 

  30. Collatz KG, Horning M (1990). Age dependent changes of a biochemicalrhythm–the glycolytic oscillator of the blowfly Phormia terraenovae. Comp Biochem Physiol. 96B: 771–4.

    CAS  Google Scholar 

  31. Horning M, Collatz KG (1990). First description of the glycolytic oscillator of an insect, the blowfly Phormia terraenovae. Comp Biochem Physiol. 95B: 613–18.

    Google Scholar 

  32. Blake KJ, Hoopengardner B, Centurion A, Helfland SL (1996). A molecular marker confirms that the rate of adult maturation is largely independent of the rate of pre-adult development in Drosophila melanogaster. Dev Gen. 18: 125–30.

    Article  CAS  Google Scholar 

  33. Lints FA, Lints CV (1971). Influence of preimaginalenvironment on fecundity and ageing in Drosophila melanogaster hybrids - II. Preimaginaltemperature. Exp Gerontol. 6: 417–26.

    Google Scholar 

  34. Carey JR (2002). Longevity minimalists: life tabelstudies of two species of northern Michigan adult mayflies. Exp Gerontol. 37: 567–70.

    Article  PubMed  Google Scholar 

  35. Chapman T, Miyatake T, Smith HK, Partridge L (1998). Interaction of mating, egg production and death rates in females of the mediterrranean fruit fly, Ceratitis capitata. Proc R Soc Lond Ser B 265: 1879–94.

    Google Scholar 

  36. Civetta A, Clark A (2000). Correlated effects of sperm competition and postmating female mortality. PNAS. 97: 1362–5.

    Article  Google Scholar 

  37. Carey JR, Liedo P, Harshman L, Zhang Y, Muller HG, Partridge L, Wang JL (2001). A mortality cost of virginity at older ages in female mediterranean fruit flies. Exp Gerontol. 37: 507–12.

    Article  Google Scholar 

  38. Collatz KG, Wilps H (1986). Ageing of flight mechanism. In: Collatz KG, SohalRS, eds. Insect Ageing. Berlin, Heidelberg, New York, Tokyo: Springer, pp. 55–72.

    Chapter  Google Scholar 

  39. Tanaka S, Suzuki Y (1998). Physiologicaltrade-offs between reproduction, flight capability and longevityin a wing-dimorphic cricket, Modicogryllus confirmatus. J 1nsect Physiol. 44: 121–9.

    Article  CAS  Google Scholar 

  40. Zera A, Potts J, Kobus K (1998). The physiology of life-history trade-offs: experimentalanalysis of a hormonally induced life-history trade-off in Gryllus assimilis. Am Nat. 152: 7–23.

    Article  PubMed  CAS  Google Scholar 

  41. Carey JR, Liedo P, Muller HG, Wang JL, VaupelW (1998). Dualmodes of ageing in mediterranea fruit fly females. Science 281: 996–8.

    CAS  Google Scholar 

  42. Wylie HG (1962). An effect of host age on female longevitiyin Nasonia vitripennis lWalk.) lHymenoptera, Pteromalidae). Can Entomol. 94: 990–3.

    Article  Google Scholar 

  43. Wylie HG (1966). Survivaland reproduction of Nasonia vitripennis lWalk.) at different host population densities. Can Entomol. 98: 275–81.

    Article  Google Scholar 

  44. Davies I (1975). A study of the effect of diet on the life span of Nasonia vitripennis lWalk.) lHymenoptera, Ptermoalidae). JGerontol. 30: 294–8.

    Article  CAS  Google Scholar 

  45. Page Jr. RE, Peng CYS (2001). Ageing and development in socialinsects with emphasis on the honey bee, Apis mellifera, L. Exp Gerontol. 36: 695–711.

    Google Scholar 

  46. Carey JR (2001). Demographic mechanisms for the evolution of long life in socialinsects. Exp Gerontol. 36: 713–22.

    Article  PubMed  CAS  Google Scholar 

  47. Wilson EO (1971). The 1nsect Societies. Cambridge, Mass: The Belknap Press of Harvard University Press

    Google Scholar 

  48. Calderone NW (1998). Proximate mechanisms of age polyethism in the honey bee, Apis mellifera L. Apidologie 29: 127–58.

    Article  Google Scholar 

  49. Guzmân-Novoa E, Page Jr. RE, Gary NE (1994). Behaviouraland life-history components of division of labor in honey bees lApis mellifera L.). Behav Ecol Sociobiol. 34: 409–17.

    Article  Google Scholar 

  50. Naugh D, Gadagkar R (1998). The role of age in temporalpolyethism in a primitively eusocialwasp. Behav Ecol Sociobiol. 42: 37–47.

    Article  Google Scholar 

  51. Chapuisat M, Keller L (2002). Division of labour influences the rate of ageing in weaver ant workers. Proc R Soc Lond Ser B 269: 909–13.

    Article  Google Scholar 

  52. Moritz RFA (1994). Nourishment and socialityin honeybees. In: Hunt JH, Nalepa CA, eds. Nourishment and Evolution in 1nsect Societies. Boulder, San Francisco, Oxford: Westview Press, pp. 345–90.

    Google Scholar 

  53. Neukirch A (1982). Dependence of the life span of the honeybee lApis mellica) upon flight performance and energy consumption. J Comp Physiol B. 146: 35–40.

    Article  CAS  Google Scholar 

  54. Keller L (1998). Queen lifespan and colony characteristics in ants and termites. 1nsectes Soc. 45: 235–46.

    Google Scholar 

  55. McCay CM, Maynard L (1935). The effect of retarded growth upon length of life and upon ultimate size. JNutr. 10: 63–79.

    CAS  Google Scholar 

  56. Masoro EJ (2000). Caloric restriction and ageing: an update. Exp Gerontol. 35: 299–305.

    Article  PubMed  CAS  Google Scholar 

  57. Kaitala A (1991). Phenotypic plasticityin reproductive behaviour of waterstriders: tradeoffs between reproduction an longevity during food stress. Funct Ecol, 5: 12–18.

    Article  Google Scholar 

  58. Ernsting G, Isaaks JA (1991). Accerlerated ageing: a cost of reproduction in the carabid beetle Notiophilius biguttatus F. Funct Ecol. 5: 299–303.

    Article  Google Scholar 

  59. David M, van Herrewege J, Fuillet P (1971). Quantitative under-feeding of Drosophila: effects on adult longevity and fecundity. Exp Gerontol. 6: 249–57.

    Article  PubMed  CAS  Google Scholar 

  60. Le Bourg E, Medioni J (1991). Food restriction and longevityin Drosophila melanogaster. Age Nutr. 2: 90–4.

    Google Scholar 

  61. Partridge L, Green A, Fowler K (1987). Effects of egg-production and of exposure to males on female survivalin Drosophila melanogaster. J 1nsect Physiol. 33: 745–9.

    Article  Google Scholar 

  62. Chippindale AK, Leroi AM, Kim SB, Rose MR (1993). Phenotypic plasticity and selection in Drosophila life history evolution. I. Nutrition and the cost of reproduction. J Evol Biol. 6: 171–93.

    Google Scholar 

  63. Chapman T, Partridge L (1996). Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc R Soc Lond Ser B. 263: 755–9.

    Article  CAS  Google Scholar 

  64. Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002). Dietary restriction in long lived dwarf flies. Science 296: 319.

    Article  PubMed  CAS  Google Scholar 

  65. Riha VF, LuckinbillLS (1996). Selection for longevity favours stringent metabolic controlin Drosophila melanogaster. J Gerontol A 51: B284–49.

    CAS  Google Scholar 

  66. LuckinbillLS, Foley P (2000). The role of metabolism in ageing. JAm Ageing Ass. 23: 85–93.

    Google Scholar 

  67. SohalRS, Weindruch R (1996). Oxidative stress, caloric restriction, and ageing. Science 273: 59–63.

    Article  Google Scholar 

  68. Holliday R (1989). Food, reproduction and longevity: is the extended life span of caloricrestricted animals an evolutionary adaptation? Bioessays 10: 125–7.

    Article  PubMed  CAS  Google Scholar 

  69. Shanley DP, Kirkwood TBL (2000). Caloric restriction and ageing: a life-history analysis. Evolution 54: 740–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Collatz, KG. (2003). Aging and Environmental Conditions in Insects. In: Osiewacz, H.D. (eds) Aging of Organisms. Biology of Aging and its Modulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0671-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0671-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6332-8

  • Online ISBN: 978-94-017-0671-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics