Skip to main content

Genetic, Metabolic and Environmental Factors Associated with Aging in Plants

  • Chapter
Aging of Organisms

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 4))

Abstract

In general biological aging either refers in a broad sense to the chronological progression of an organism’s life, or in a more confined way to the “old age,” the last phase preceding death, which is characterized by a decline in physiological processes and vigour [1,2]. In analogy to the theory of aging as defined for animals by Harman [3, 4], in this article aging of plants is used in the broader sense as the process of slow, progressive and sequential alterations a plant or a part of a plant undergoes during its development until death. In contrast to animals, plants have extremely different life spans ranging from a few days up to several thousands of years in case of some trees. Moreover, life spans of different organs of a plant can substantially differ from the whole plant [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Partridge L, Barton NH (1993). Optimality, mutation and the evolution of ageing. Nature 362: 305–11.

    PubMed  CAS  Google Scholar 

  2. Bond BJ (2000). Age-related changes in photosynthesis of woody plants. Trends Plant Sci. 5: 349–53.

    PubMed  CAS  Google Scholar 

  3. Harman D (1981). The aging process. Proc Natl Acad Sci USA 78: 7124–8.

    PubMed  CAS  Google Scholar 

  4. Harman D (1991). The aging process: major risk factor for disease and death. Proc Natl Acad Sci USA 88: 5360–3.

    PubMed  CAS  Google Scholar 

  5. Guarente L, Ruvkun G, Amasino R (1998). Aging, life span, and senescence. Proc Natl Acad Sci USA 95: 11034–6.

    PubMed  CAS  Google Scholar 

  6. Poethig RS (1990). Phase change and the regulation of shoot morphogenesis in plants. Science 250: 923–30.

    PubMed  CAS  Google Scholar 

  7. Lawson EJ, Poethig RS (1995). Shoot development in plants: time for a change. Trends Genet. 11: 263–8.

    PubMed  CAS  Google Scholar 

  8. Ratcliffe OJ, Amaya I, Vincent CA, et al. (1998). A common mechanism controls the life cycle and architecture of plants. Development 125: 1609–15.

    PubMed  CAS  Google Scholar 

  9. Molisch H, ed. (1929). Die Lebensdauer der Pflanzen. Verlag Gustav Fischer, Jena.

    Google Scholar 

  10. Nooden LD (1988a). The phenomena of senescence and aging. In: Nooden LD, Leopold AC, eds. Senescence and Aging in Plants. San Diego: Academic Press Inc, pp. 1–50.

    Google Scholar 

  11. Nooden LD (1988b). Whole plant senescence. In: Nooden LD, Leopold AC, eds. Senescence and Aging in Plants. San Diego: Academic Press Inc., pp. 391–439.

    Google Scholar 

  12. Leopold AC (1961). Senescence in plant development. Science 134: 1727–32.

    PubMed  CAS  Google Scholar 

  13. Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell, 5: 553–64.

    PubMed  CAS  Google Scholar 

  14. Nooden LD, Guiamet JJ, John I (1997). Senescence mechanisms. Physiol Plant 101: 746–53.

    CAS  Google Scholar 

  15. Wittenbach VA (1982). Effect of pod removal on leaf senescence in soybeans. Plant Physiol. 70: 1544–8.

    PubMed  CAS  Google Scholar 

  16. Thomas H (2002). Ageing in Plants. Mech Ageing Dev. 123: 747–53.

    PubMed  Google Scholar 

  17. Barak S, Tobin EM, Andronis C, Sugano S, Green RM (2000). All in good time: the Arabidopsis circadian clock. Trends Plant Sci. 5: 517–21.

    PubMed  CAS  Google Scholar 

  18. Dangl JI, Dietrich RA, Thomas H (2000). Senescence and programmed cell death. In: Buchanan B, Gruissem W, Jones R, eds. Biochemistry and Molecular Biology of Plants. Rockville, MD: American Society of Plant Physiologist, pp. 1044–100.

    Google Scholar 

  19. Pennell RI, Lamb C (1997). Programmed cell death in plants. Plant Cell 9: 1157–68.

    PubMed  CAS  Google Scholar 

  20. Mothes K, Baudisch W (1958). Untersuchungen über die Reversibilitat der Ausbleichung gruner Blatter. Flora 146: 521–32.

    CAS  Google Scholar 

  21. Kleber-Janke T, Krupinska K (1997). Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 203: 332–40.

    PubMed  CAS  Google Scholar 

  22. Thomas H, Donnison I (2000). Back from the brink: plant senescence and its reversibility. In: Bryant JA, Hughes SG, Garland JM, eds. Programmed Cell Death in Animals and Plants. Oxford: BIOS Scientific Publishers Ltd, pp. 149–62.

    Google Scholar 

  23. Koornneef M, Alonso-Blanco C, Peeters AJ, Soppe W (1998). Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol. 49: 345–70.

    CAS  Google Scholar 

  24. Fischer A, Feller U (1994). Senescence and protein degradation in leaf segments of young winter wheat: influence of leaf age. J Exp Bot. 45: 103–9.

    CAS  Google Scholar 

  25. Mothes K, Engelbrecht L (1952). Uber geschlechtsverschiedenen Stoffwechsel zweihau-siger einjahriger Pflanzen. Flora 139: 1–27.

    CAS  Google Scholar 

  26. Wolpert, L (ed). (1998). Principles of Development. Oxford: Oxford University Press.

    Google Scholar 

  27. Nam HG (1997). The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol. 8: 200–7.

    PubMed  CAS  Google Scholar 

  28. Blasquez MA, Soowal LN, Lee I, Weigel D (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835–44.

    Google Scholar 

  29. Kurepa J, Smalle J, VanMontagu M, Inze D (1998). Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J. 14: 759–64.

    PubMed  CAS  Google Scholar 

  30. Koornneef M, Hanhart CJ, van der Veenj JH (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 229: 57–66.

    CAS  Google Scholar 

  31. Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996). The clavata and shoot meristemless loci competitively regulate meristem activity in Arabidopsis. Development 122: 1567–75.

    CAS  Google Scholar 

  32. Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001). Revoluta regulates meristem initiation at lateral positions. Plant J. 25: 223–36.

    PubMed  CAS  Google Scholar 

  33. Pogany JA, Simon EJ, Katzman RB, et al. (1998). Identifying novel regulators of shoot meristem development. J Plant Res. 111: 307–13.

    CAS  Google Scholar 

  34. Hanaoka H, Noda T, Shirano Y, et al. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129: 1181–93.

    PubMed  CAS  Google Scholar 

  35. Soppe WJ, Bentsink L, Koornneef M (1999). The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana. Development 126: 476370.

    Google Scholar 

  36. Huq E, Tepperman M, Quail PH (2000) Gigantea is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97: 9789–94.

    CAS  Google Scholar 

  37. Nooden LD, Penney JP (2001). Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). J Exp Bot. 52: 2151–9.

    PubMed  CAS  Google Scholar 

  38. Greenwood MS (1995). Juvenility, maturation in conifers: current concepts. Tree Physiol. 15: 433–8.

    PubMed  Google Scholar 

  39. Guarente L (1997). What makes us tick? Science 275: 943–4.

    PubMed  CAS  Google Scholar 

  40. Braeckman BP, Houthoofd K, Vanfleteren JR (2001). Insulin-like signaling, metabolism, stress resistance and aging in Caenorhabditis elegans. Mech Ageing Dev. 122: 673–693.

    CAS  Google Scholar 

  41. Beckman KB, Ames BN (1998). The free radical theory of aging matures. Physiol Rev. 78: 547–81.

    PubMed  CAS  Google Scholar 

  42. Osiewacz HD (1997). Genetic regulation of aging. J Mol Med. 75: 715–27.

    PubMed  CAS  Google Scholar 

  43. Osiewacz HD, Kimpel E (1999). Mitochondrial-nuclear interactions and life span control in fungi. Exp Gerontol. 34: 901–9.

    PubMed  CAS  Google Scholar 

  44. Osiewacz HD, Stumpferl SW (2001). Metabolism and aging in the filamentous fungus Podospera anserina. Arch Gerontol Geriatr. 32: 185–97.

    PubMed  CAS  Google Scholar 

  45. Pearl R (1928). The Rate of Living. London: University of London Press.

    Google Scholar 

  46. Allen RD, Webb RP, Shale SA (1997). Use of transgenic plants to study antioxidant defenses. Free Rad Biol Med. 23: 473–9.

    PubMed  CAS  Google Scholar 

  47. Polle A (1997). Defense against photooxidative damage in plants. In: Scandalios JG, ed. Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, pp. 623–66.

    Google Scholar 

  48. Bray EA, Bailey-Serres J (2000). Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL, eds. Biochemistry and Molecular Biology of Plants. Rockville, MD, USA: American Society of Plant Physiologists, pp. 1158–203.

    Google Scholar 

  49. Arisi AM, Noctor G, Foyer 49. CH, Jouanin L (1997). Modification of thiol contents in poplars (Poplus tremula, Poplus alba) overexpressing enzymes involved in glutathione synthesis. Planta 203: 362–72.

    CAS  Google Scholar 

  50. Foyer CH, Souriau N, Perret S, et al. (1995). Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047–57.

    PubMed  CAS  Google Scholar 

  51. Gullner G, Komives T, Rennenberg H (2001). Enhanced tolerance of transgenic poplar plants overexpressing y-glutamylcysteine synthese towards chloroacetanilide herbicides. J Exp Bot. 52: 971–9.

    PubMed  CAS  Google Scholar 

  52. Casal JJ (2002). Environmental cues affecting development. Curr Opin Biotechnol. 5: 3742.

    Google Scholar 

  53. Pidkowich MS, Klenz JE, Haughn GW (1999). The making of a flower: control of floral meristem identity in Arabidopsis. Trends Plant Sci. 4: 64–70.

    Google Scholar 

  54. Reeves PH, Coupland G (2000). Response of plant development to environment: Control of flowering by day length and temperature. Curr Opin Plant Biol. 3: 37–42.

    PubMed  CAS  Google Scholar 

  55. Pell EJ, Dann MS (1991). Multiple stress-induced foliar senescence and implications for whole-plant longevity. In: Responses of Plants to Multiple Stresses. New York: Academic Press, pp. 189–204

    Google Scholar 

  56. Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sei. 7: 405–10.

    CAS  Google Scholar 

  57. Munne-Bosch S, Alegre L (2002). Plant aging increases oxidative stress in chloroplasts. Planta 214: 608–15.

    PubMed  CAS  Google Scholar 

  58. Kolb TE, Fredrickson TS, Steiner KC, Skelly JM (1998). Issues in scaling tree size and age responses to ozone: a review. Environ Pollution 98: 195–208.

    Google Scholar 

  59. Mittova V, Tal M, Volokita M, Guy M (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lyeopersieon penellii but not in the cultivated species. Physiol Plant 115: 393–400.

    PubMed  CAS  Google Scholar 

  60. Kondo N, Kawashima M (2000). Enhancement of the tolerance to oxidative stress in cucumber (Cueumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidative enzymes. J Plant Res. 113: 311–17.

    CAS  Google Scholar 

  61. Proebstig WM, Davies PJ, Marx GA (1976). Photoperiodic control of apical senescence in a genetic line of peas. Plant Physiol. 58: 800–2.

    Google Scholar 

  62. Woo HR, Goh CH, Park JH, et al. (2002). Extended leaf longevity in the ore4–1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gene. Plant J. 31 (3): 331–40.

    PubMed  CAS  Google Scholar 

  63. Telfer A, Bollman KM, Poethig RS (1997). Phase change and the regulation of trichrome distribution in Arabidopsis thaliana. Development 124: 645–54.

    CAS  Google Scholar 

  64. Thomas H, Smart CM (1993). Crops that stay green. Ann Appl Biol. 123: 193–219.

    Google Scholar 

  65. Thomas H, Howarth CJ (2000). Five ways to stay green. J Exp Bot. 51: 329–37.

    PubMed  CAS  Google Scholar 

  66. Grbic V, Bleecker AB (1995). Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 8: 595–602.

    CAS  Google Scholar 

  67. Oh SA, Park JH, Lee GI, Paek SH, Park SK, Nam HG (1997). Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J. 12: 527–35.

    CAS  Google Scholar 

  68. Woo HR, Chung KM, Park JH, et al. (2001). ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13: 1779–90.

    CAS  Google Scholar 

  69. Yoshida S, Ito M, Callis J, Nishida I, Watanabe A (2002). A delayed leaf senescence mutant is defective in arginyl-tRNA: protein arginyltransferase, a component of the N- end rule pathway in Arabidopsis. Plant J. 32: 129–37.

    CAS  Google Scholar 

  70. Jing HC, Sturre MJG, Hille J, Dijkwel PP (2002). Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J. 32: 51–63.

    PubMed  CAS  Google Scholar 

  71. Miller AC, Schlagnhaufer C, Spalding M, Rodermel S (2000). Carbohydrate regulation of leaf development: prolongation of leaf senescence in Rubisco antisense mutants of tobacco. Photosyn Res. 63: 1–8.

    PubMed  CAS  Google Scholar 

  72. Freeland RO (1952). Effect of age of leaves upon the rate of photosynthesis in some conifers. Plant Physiol. 27: 685–90.

    PubMed  CAS  Google Scholar 

  73. Oren RE, Schulze ED, Matyssek R, Zimmermann R (1986). Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass. Oeeologiea 70: 187–93.

    Google Scholar 

  74. Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proe Natl Aead Sei USA 94: 13730–4.

    CAS  Google Scholar 

  75. Greenberg JT, Ausubel FM (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4: 327–41.

    CAS  Google Scholar 

  76. Mou Z, He Y, Dai Y, Liu X, Li J (2000). Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology. Plant Cell 12: 40517.

    Google Scholar 

  77. Hinderhofer K, Zentgraf U (2001). Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213: 469–73.

    PubMed  CAS  Google Scholar 

  78. Melis A (1990). Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106.

    Google Scholar 

  79. Andersson B, Aro EM (2001). Photodamage and D1 protein turnover in photosystem II. Adv Photosyn Respir. 11: 377–93.

    CAS  Google Scholar 

  80. Humbeck K, Quast S, Krupinska K (1996). Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ. 19: 337–44.

    CAS  Google Scholar 

  81. Krupinska K, Humbeck K (2003). Photosynthesis and chloroplast breakdown. In: Nooden LD, ed. Cell Death in Plants. San Diego: Academic Press Inc., in press.

    Google Scholar 

  82. Gan S, Amasino RM (1997). Making sense of senescence–molecular genetic regulation and manipulation of leaf senescence. Plant Physiol. 113: 313–19.

    PubMed  CAS  Google Scholar 

  83. Wingler A, von Schaewen A, Leegood RC, Lea PJ, Quick WP (1998). Regulation of leaf senescence by cytokinin, sugars, and light. Effects on NADH-dependent hydroxypyruvate reductase. Plant Physiol. 116: 329–35.

    CAS  Google Scholar 

  84. Neill S, Desikan R, Hancock J (2002). Hydrogen peroxide signalling. Curr Opin Plant Biol. 5: 388–95.

    PubMed  CAS  Google Scholar 

  85. Miller JD, Arteca RN, Pell EJ (1999). Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol. 120: 1015–24.

    PubMed  CAS  Google Scholar 

  86. Falk J, Krauss N, Dahnhardt D, Krupinska K (2002). A senescence associated gene of barley encoding 4-hydroxyphenylpyruvate dioxygenase is expressed during oxidative stress. J Plant Physiol. 159: 1245–53.

    Google Scholar 

  87. Kunert KJ, Ederer M (1985). Leaf aging and lipid peroxidation: the role of antioxidants vitamin C and E. Physiol Plant 65: 85–8.

    CAS  Google Scholar 

  88. Lichtenthaler HK (1966). Verbreitung und Konzentration des «-Tocopherols in Chloro-plasten. Ber Dtsch Bot Ges. 79: 111–17.

    CAS  Google Scholar 

  89. Chrost B, Falk J, Kernebeck B, Molleken H, Krupinska K (1999). Tocopherol biosynthesis in senescing chloroplasts–a mechanism to protect envelope membranes against oxidative stress and a prerequisite for lipid remobilization? In: Argyroudi- Akoyunoglou JH, Senger H, eds. The Chloroplast: From Molecular Biology to Biotechnology. The Netherlands: Kluwer Academic Publishers, pp. 171–6.

    Google Scholar 

  90. Rousseaux MC, Sanchez RA (1996). Rar-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower. Physiol Plant 96: 21724.

    Google Scholar 

  91. Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 161: 765–71.

    CAS  Google Scholar 

  92. Humbeck K, Krupinska K (2003). The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light. J Exp Bot. 54: 375–83.

    PubMed  CAS  Google Scholar 

  93. DeSouza PI, Egli DB, Bruening WP (1997). Water stress during seed filling and leaf senescence in soybean. Agron J. 89: 807–12.

    Google Scholar 

  94. Pic E, Teyssendier de la Serve B, Tardieu F, Turc O (2002). Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiol. 128: 236–46.

    CAS  Google Scholar 

  95. Obregon P, Martin R, Sanz A, Castresana C (2001). Activation of defence-related genes during senescence: a correlation between gene expression and cellular damage. Plant Mol Biol. 46: 67–77.

    PubMed  CAS  Google Scholar 

  96. Ruperti B, Cattivelli L, Pagni S, Ramina A (2002). Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). J Exp Bot. 53: 429–37.

    PubMed  CAS  Google Scholar 

  97. Robatzek S, Somssich IE (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev. 16: 1139–49.

    PubMed  CAS  Google Scholar 

  98. Strohm M, Eiblmeier M, Langebartels C, et al. (1999). Responses of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exp Bot. 50: 36574.

    Google Scholar 

  99. Bilger W, Johnsen T, Schreiber U (2001). UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot. 52: 2007–14.

    PubMed  CAS  Google Scholar 

  100. Orendi G, Zimmermann P, Baar C, Zentgraf U (2001). Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci. 161: 301–14.

    PubMed  CAS  Google Scholar 

  101. Peters W, Ritter J, Tiller H, et al. (2000). Growth, ageing and death of a photoauto-trophic plant cell culture. Planta 210: 478–87.

    PubMed  CAS  Google Scholar 

  102. Schoch S, Vielwerth FX (1983). Chlorophyll degradation in a senescent tobacco cell culture (Nicotiana tabacum var. Samsun). Z Pflanzenphysiol. 110: 309–17.

    CAS  Google Scholar 

  103. Greider CW (1998). Telomeres and senescence: the history, the experiment, the future. Curr Biol.8: R178–81.

    Google Scholar 

  104. Shippen DE, McKnight TD (1998). Telomeres, telomerase and plant development. Trends Plant Sci. 3: 126–30.

    Google Scholar 

  105. Kilian A, Stiff C, Kleinhofs A (1995). Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci USA 92: 9555–9.

    PubMed  CAS  Google Scholar 

  106. Zentgraf U, Hinderhofer K, Kolb D (2000). Specific association of a small protein with the telomeric DNA-protein complex during the onset of leaf senescence in Arabidopsis thaliana. Plant Mol Biol. 42: 429–38.

    CAS  Google Scholar 

  107. Leech RM (1984). Chloroplast development in angiosperms: current knowledge and future prospects In: Baker NR, Barber J, eds. Chloroplast Biogenesis. Amsterdam: Elsevier Science Publishers, pp. 1–21.

    Google Scholar 

  108. Krupinska K, Falk J (1994). Changes in RNA-polymerase activity during biogenesis, maturation and senescence of barley chloroplasts. Comparative analysis of transcripts synthesized either in run-on assays or by transcriptionally active chromosomes. J Plant Physiol. 143: 298–305.

    CAS  Google Scholar 

  109. Zeiger E, Schwartz A (1982). Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging. Science 218: 680–2.

    PubMed  CAS  Google Scholar 

  110. Yang SH, BerberichT, Sano H, Kusano T (2001). Specific association of transcripts of tbzFand tbzl7, tobacco genes encoding basic region leucine zipper-type transcriptional activators, with guard cells of senecing leaves and/or flowers. Plant Physiol. 127: 23–32.

    PubMed  CAS  Google Scholar 

  111. Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11: 298–300.

    PubMed  CAS  Google Scholar 

  112. Noctor G, Foyer CH (1998). Ascorbate and Glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 49: 249–79.

    PubMed  CAS  Google Scholar 

  113. Meyer W, Spiteller G (1997). Oxidized phytosterols increase by ageing in photoauto-trophic cell cultures of Chenopodium rubrum. Phytochem. 45: 297–302.

    CAS  Google Scholar 

  114. Thompson JE, Ledge RL (1987). The role of free radicals in senescence and wounding. NewPhytol. 105: 317–44.

    CAS  Google Scholar 

  115. Schoettle AW (1994). Influence of tree size on shoot structure and physiology of Pinus contorta and Pinus aristata. Tree Physiol. 14: 1055–68.

    Google Scholar 

  116. Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? AnnBot. 89: 841–50.

    CAS  Google Scholar 

  117. Pastori GM, del Rio LA (1994). An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of pea leaves. Planta 193: 385–91.

    CAS  Google Scholar 

  118. del Rio LA, Pastori GM, Palma JM, et al. (1998). The activated oxygen role of peroxisomes in senescence. Plant Physiol. 116: 1195–200.

    PubMed  Google Scholar 

  119. Corpas FJ, Barroso JB, del Rio LA (2001). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6: 145–50.

    PubMed  CAS  Google Scholar 

  120. LeshemYY, Wills RH, Ku VV (1998). Evidence for the function of the free radical gas–nitric oxide (NO’)–as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem. 36: 825–33.

    Google Scholar 

  121. Beligni MV, Lamattina L (2001). Nitric oxide in plants: the history is just beginning. Plant Cell Environ. 24: 267–78.

    CAS  Google Scholar 

  122. Klessig DF, Durner J, Noad R, et al. (2000). Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97: 8849–55.

    PubMed  CAS  Google Scholar 

  123. Beligni MV, Lamattina L (1999). Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 208: 337–44.

    CAS  Google Scholar 

  124. Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998). Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol. 118: 1327–35.

    PubMed  CAS  Google Scholar 

  125. Lam E, Pontier D, del Pozo O (1999). Die and let live–programmed cell death in plants. Curr Opin Plant Biol. 2: 502–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krupinska, K., Falk, J., Humbeck, K. (2003). Genetic, Metabolic and Environmental Factors Associated with Aging in Plants. In: Osiewacz, H.D. (eds) Aging of Organisms. Biology of Aging and its Modulation, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0671-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0671-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6332-8

  • Online ISBN: 978-94-017-0671-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics