Skip to main content

Regulation of Cellular Senescence by the Retinoblastoma Pathway

  • Chapter
Aging of Cells in and Outside the Body

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 2))

  • 127 Accesses

Abstract

The progressive decline in proliferative capacity is an intrinsic property of most normal somatic cells. Cells will lose division potential with roughly exponential kinetics and eventually reach a state of permanent growth arrest, referred to as replicative senescence [1]. Senescent cells remain viable and metabolically active, but cannot re-initiate DNA replication in response to physiological mitogenic stimuli [1–3]. Expression of senescence-associated (SA)-β-galactosidase in human skin cells has provided evidence that cells also undergo senescence in vivo [4]. One of the proposed consequences of the senescence response is organismal aging; skin biopsies from older individuals have a greater proportion of senescent cells in situ and a lesser proliferative capacity in culture [5, 6]. Also, cross-species comparisons suggest an inverse relationship between the proliferative lifespan of fibroblasts in culture and organism life span [7]. Certainly, decrements in cell renewal would compromise tissue function and integrity, but changes in the differentiated function of senescence cells would also contribute to aging. Senescent fibroblasts, for example, switch from matrix-producing to matrix-degrading cells, secreting large amounts of interstitial collagenase and stromelysin [reviewed in ref. 8] which may contribute to thinning of the dermis as observed in vivo. Thus, senescence may prevent the perpetual proliferation of cells during early adulthood, but the accumulation of dysfunctional, apoptotic-resistant senescent cells can have deleterious effects later in life and may promote the development of cancer [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stanulis-Praeger B (1987). Cellular senescence revisited: a review. Mech Ageing Dev. 38: 1–48.

    Article  PubMed  CAS  Google Scholar 

  2. Campisi J, Dimri GP, Hara E (1996). Controlof replicative senescence. In: Schneider E, Rowe J, eds. Handbook of the Biology of Aging.New York: Academic Press, pp. 121–149.

    Google Scholar 

  3. Cristofalo VJ, Pignolo RJ (1993). Replicative senescence of human fibroblast-like cells in culture. Physiol Rev. 73: 617–638.

    PubMed  CAS  Google Scholar 

  4. Dimri GP, Lee X, Basile G, et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 92: 9363–9367.

    Article  PubMed  CAS  Google Scholar 

  5. Bayreuther K, Francz PI, GogolJ, Kontermann K (1992). Terminaldifferentiation, aging, apoptosis and spontaneous transformation in fibroblast stem cellsystems in vivo and in vitro. Ann NYAcad Sci. 663: 167–179.

    CAS  Google Scholar 

  6. Haddad MM, Xu W, Medrano EE (1998). Aging in epidermalmelanocytes: cellcycle genes and melanins. JInvest Dermatol Symp Proc. 3: 36–40.

    CAS  Google Scholar 

  7. Rohme D l1981). Evidence for a relationship between longevity of mammalian species and life spans of normalfibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 78: 5009–5013.

    Google Scholar 

  8. Campisi J (1997). Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatric Soc. 45: 1–6.

    Google Scholar 

  9. Neumeister P, Albanese C, Balent B, Greally J, PestellRG (2002). Senescence and epigenetic dysregulation in cancer. Int JBiochem Cell Biol. 34: 1475–1490.

    Article  CAS  Google Scholar 

  10. Toussaint O, Remacle J, Dierick J-F, et al. (2002). From the Hayflick mosaic to the mosaics of aging. Role of stress-induced premature senescence in human aging. Int J Biochem Cell Biol. 34: 1415–1429.

    Article  PubMed  CAS  Google Scholar 

  11. Shay JW, Pereira-Smith OM, Wright WE (1991). A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res. 196: 33–39.

    Article  PubMed  CAS  Google Scholar 

  12. Shay JW, Wright WE, Werbin H (1991). Defining the molecular mechanisms of human cellimmortalization. Biochim Biophys Acta 1072: 1–7.

    PubMed  CAS  Google Scholar 

  13. Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K (1991). Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun. 179: 528–534.

    Article  PubMed  CAS  Google Scholar 

  14. Zindy F, Eischen CM, Randle DH, et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12: 2424–2433.

    Article  PubMed  CAS  Google Scholar 

  15. Kamijo T, Zindy F, RousselMF, et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  PubMed  CAS  Google Scholar 

  16. Cobrinik D, Lee MH, Hannon G, et al. (1996). Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10: 1633–1644.

    Article  PubMed  CAS  Google Scholar 

  17. Herrera RE, Makela TP, Weinberg RA (1996). TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol Biol Cell 7: 1335–1342.

    Article  PubMed  CAS  Google Scholar 

  18. Dannenberg J-H, van Rossum A, Schuijff L, Te Riele H (2000). Ablation of the retinoblastoma gene family deregulates G1 controlcausing immortalization and increased cellturnover under growth-restricting conditions. Genes Dev. 14: 3051–3064.

    Article  PubMed  CAS  Google Scholar 

  19. Morgan DO (1995). Principles of CDK regulation. Nature 374: 131–134.

    Article  PubMed  CAS  Google Scholar 

  20. Sherr CJ (1994). G1 phase progression: cyclin on cue. Cell 79: 551–5.

    Article  PubMed  CAS  Google Scholar 

  21. Sherr CJ, Roberts JM (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9: 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  22. Gabrielli BG, Sarcevic B, Sinnamon J, et al. (1999). A cyclin D-CDK4 activity is required for G2 phase cellcycle progression in ultraviolet radiation induced G2 phase delay. J Biol Chem. 274: 13961–13969.

    Article  PubMed  CAS  Google Scholar 

  23. Grana X, Garriga J, MayolX (1998). Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative controlof cellgrowth. Oncogene 17: 3365–3383.

    Google Scholar 

  24. Johnson DG, Schneider-Broussard R (1998). Role of E2F in cellcycle controland cancer. Front Biosci. 27: 447–448.

    Google Scholar 

  25. Bates S, Phillips AC, Clark PA, et al. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395: 124–125.

    Google Scholar 

  26. Luo RX, Postigo AA, Dean DC (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92: 463–473.

    Article  PubMed  CAS  Google Scholar 

  27. Grana X, Reddy P (1995). Cellcycle controlin mammalian cells: role of cyclins, cyclin dependent kinases lCDKs), growth suppressor genes and cyclin-dependent kinase inhibitors lCKIs). Oncogene 11: 211–219.

    PubMed  CAS  Google Scholar 

  28. Kato JY, Matsuoka M, Polyak K, Massague J, Sherr CJ (1994). Cyclic AMP-induced G1 phase arrest mediated by an inhibitor lp27Kip1) of cyclin-dependent kinase 4 activation. Cell 79: 487–496.

    Article  PubMed  CAS  Google Scholar 

  29. Dai CY, Enders GH (2000). p16INK4a can initiate an autonomous senescence program. Oncogene 19: 1613–1622.

    Google Scholar 

  30. Alexander K, Hinds PW (2001). Requirement for p27Kip1 in retinoblastoma protein-mediated senescence. Mol Cell Biol. 21: 3616–3631.

    Article  PubMed  CAS  Google Scholar 

  31. Xu H-J, Zhou Y, Ji W, et al. (1997). Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene 15: 2589–2596.

    Article  PubMed  CAS  Google Scholar 

  32. Tiemann F, Hinds PW (1998). Induction of DNA synthesis and apoptosis by regulated inactivation of a temperature-sensitive retinoblastoma protein. EMBO J. 17: 104–152.

    Article  Google Scholar 

  33. Kiyono T, Foster SA, Koop JI, McDougallJK, Galloway DA, Klingelhutz AJ (1998). Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelialcells. Nature 396: 84–88.

    CAS  Google Scholar 

  34. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997). Oncogenic ras provokes premature cellsenescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  PubMed  CAS  Google Scholar 

  35. Rane SG, Cosenza SC, Mettus RV, Reddy EP (2002). Germ line transmission of the Cdk4R24C mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol. 22: 644–656.

    Article  PubMed  CAS  Google Scholar 

  36. Hurford Jr RK, Cobrinik D, Lee MH, Dyson N (1997). pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11: 1447–1463.

    Google Scholar 

  37. Sherr CJ (1996). Cancer cellcycles. Science 274: 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  38. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cellcycle arrest. Cell 83: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  39. James MC, Peters G (2000). Alternative product of the p16/CDKN2A locus connects the Rb and p53 tumor suppressors. Prog Cell Cycle Res. 4: 71–81.

    Article  PubMed  CAS  Google Scholar 

  40. Serrano M, Lee H-W, Chin L, Cordon-Cardo C, Beach D, DePinho RA (1996). Role of the INK4a locus in tumor suppression and cellmortality. Cell 85: 27–37.

    Article  PubMed  CAS  Google Scholar 

  41. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001). Loss of p16 INK4a confers susceptibility to metastatic melanoma in mice. Nature 413: 83–86.

    Article  PubMed  CAS  Google Scholar 

  42. Sharpless NE, Bardeesy N, Lee K-H, et al. (2001). Loss of p16INK4a with retention of p19ARF predisposes mice to tumorigenesis. Nature 413: 86–91.

    Article  PubMed  CAS  Google Scholar 

  43. Noble JR, Rogan EM, Neumann AA, Maclean K, Bryan TM, ReddelRR (1996). Association of extended in vitro proliferative potentialwith loss of p16INK4 expression. Oncogene 13: 1259–1268.

    PubMed  CAS  Google Scholar 

  44. Huschtscha LI, ReddelRR (1999). p16 INK4a and the controlof cellular proliferative life span. Carcinogenesis 20: 921–926.

    Google Scholar 

  45. Bandyopadhyay D, Medrano EE (2000). Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann NYAcad Sci. 908: 71–84.

    Article  CAS  Google Scholar 

  46. Palmero I, McConnellB, Parry D, et al. (1997). Accumulation of p16INK4a in mouse fibroblasts as a function of replicative senescence and not of retinoblastoma gene status. Oncogene 15: 495–503.

    Article  PubMed  CAS  Google Scholar 

  47. Hara E, Smith R, Parry D, Tahara H, Steven S, Peters G (1996). Regulation of p16lCDKN2 expression and its implications for cellimmortalization and senescence. Mol Cell Biol. 16: 859–867.

    PubMed  CAS  Google Scholar 

  48. Ohtani N ZZ, Huot TJ, Stinson JA, et al. (2001). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409: 1067–1070.

    Article  PubMed  CAS  Google Scholar 

  49. Itahana K, Zou Y, Itahana Y, et al. l2003). Controlof the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol. 23: 389–401.

    Google Scholar 

  50. Passegue E, Wagner EF (2000). JunB suppresses cellproliferation by transcriptionalactivation of p16INK4a expression. EMBO J. 19: 2969–2979.

    Article  PubMed  CAS  Google Scholar 

  51. Sellers WR, Novitch BG, Miyake S, et al. (1998). Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cellgrowth. Genes Dev. 12: 95–106.

    Article  PubMed  CAS  Google Scholar 

  52. Uhrbom L, Nister M, Westermark B (1997). Induction of senescence in human malignant glioma cells by p16INK4a. Oncogene 15: 505–514.

    Article  PubMed  CAS  Google Scholar 

  53. Timmermann S, Hinds PW, Munger K (1998). Re-expression of endogenous p16INK4a in oralsquamous cellcarcinoma lines by 5-aza-2’-deoxycytidine treatment induces a senescence-like state. Oncogene 26: 3445–3453.

    Google Scholar 

  54. Stone S, Dayananth P, Kamb A (1996). Reversible, p16-mediated cellcycle arrest as protection from chemotherapy. Cancer Res. 56: 3199–3202.

    PubMed  CAS  Google Scholar 

  55. Kefford RF, Newton Bishop JA, Bergman W, Tucker MA (1999). Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: s consensus dtatement of the melanoma genetics consortium. J Clin Oncol. 17: 3245–3251.

    PubMed  CAS  Google Scholar 

  56. Walker GJ, Gabrielli BG, Castellano M, Hayward NK (1999). Functionalreassessment of p16 variants using a transfection-based assay. Int J Cancer 82: 305–312.

    Article  PubMed  CAS  Google Scholar 

  57. Parry D, Peters G (1996). Temperature-sensitive mutants of p16CDKN2 associated with familialmelanoma. Mol Cell Biol. 16: 3844–3852.

    PubMed  CAS  Google Scholar 

  58. Becker TM, Rizos H, Kefford RF, Mann GJ (2001). Functionalimpairment of melanoma-associated p16INK4a mutants in melanoma cells despite retention of cyclindependent kinase 4 binding. Clin Cancer Res. 7: 3282–3288.

    PubMed  CAS  Google Scholar 

  59. Huot TJ, Rowe J, Harland M, et al. (2002). Biallelic mutations in p16INK4a confer resistance to Ras-and Ets-induced senescence in human diploid fibroblasts. Mol Cell Biol. 22: 8135–8143.

    Article  PubMed  CAS  Google Scholar 

  60. Li Y, Nichols MA, Shay JW, Xiong Y (1994). Transcriptionalrepression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 54: 6078–6082.

    PubMed  CAS  Google Scholar 

  61. Markey MP, Angus SP, Strobeck MW, et al. (2002). Unbiased analysis of RB-mediated transcriptionalrepression identifies noveltargets and distinctions from E2F action. Cancer Res. 62: 6587–6597.

    PubMed  CAS  Google Scholar 

  62. Alani RM, Young AZ, Shifiiett CB (2001). Id1 regulation of cellular senescence through transcriptionalrepression of p16/INK4a. Proc Natl Acad Sci USA 98: 7812–7816.

    Article  PubMed  CAS  Google Scholar 

  63. Nickoloff BJ, Chaturvedi V, Bacon P, Qin JZ, Denning MF, Diaz MO (2000). Id-1 delays senescence but does not immortalize keratinocytes. J Biol Chem. 275: 27501–27504.

    PubMed  CAS  Google Scholar 

  64. Lyden D, Young AZ, Zagzag D, et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401: 670–677.

    Article  PubMed  CAS  Google Scholar 

  65. Dellambra E, Golisano O, Bondanza S, et al. (2000). Downregulation of 14–3–3sigma prevents clonalevolution and leads to immortalization of primary human keratinocytes. J Cell Biol. 149: 1117 – 1130.

    Article  PubMed  CAS  Google Scholar 

  66. Hermeking H, Lengauer C, Polyak K, et al. (1997). 14–3–3 sigma is a p53–regulated inhibitor of G2/M progression. Mol Cell 1: 3 – 11.

    Google Scholar 

  67. Gasco M, BellAK, Heath V, et al. (2002). Epigenetic inactivation of 14–3–3 sigma in oralcarcinoma: association with p16 INK4a silencing and human papillomavirus negativity. Cancer Res. 62: 2072 – 2076.

    PubMed  CAS  Google Scholar 

  68. Gasco M, Sullivan A, Repellin C, et al. (2002). Coincident inactivation of 14–3–3 sigma and p16 INK4a is an early event in vulvalsquamous neoplasia. Oncogene 21: 1876 – 1881.

    Article  PubMed  CAS  Google Scholar 

  69. Balmanno K, Cook SJ (1999). Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18: 3085–3097.

    Article  PubMed  CAS  Google Scholar 

  70. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999). The oncogene and Polycomb-group gene bmi-1 regulates cellproliferation and senescence through the INK4a locus. Nature 397: 164–168.

    Article  PubMed  CAS  Google Scholar 

  71. Dimri GP, Martinez J-L, Jacobs JJ, et al. (2002). The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelialcells. Cancer Res. 92: 4736–4745.

    Google Scholar 

  72. Sherr CJ, Weber JD (2000). The ARF/p53 pathway. Curr Opin Genet Dev. 10: 94–99.

    Article  PubMed  CAS  Google Scholar 

  73. Sanchez-Cespedes M, Reed AL, Buta M, et al. (1999). Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-smallcelllung cancer. Oncogene 18: 5843–5849.

    Article  PubMed  CAS  Google Scholar 

  74. Esteller M, Tortola S, Toyota M, et al. (2000). Hypermethylation-associated inactivation of p14 ARF is independent of p16 INK4a methylation and p53 mutationalstatus. Cancer Res. 60: 129–133.

    PubMed  CAS  Google Scholar 

  75. Martelli F, Hamilton T, Silver DP, et al. (2001). p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci USA, 98: 4455–4460.

    Google Scholar 

  76. Eymin B, Karayan L, Seite P, et al. (2001). Human ARF binds E2F1 and inhibits its transcriptionalactivity. Oncogene 20: 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  77. Datta A, Nag A, Raychaudhuri P (2002). Differentialregulation of E2F1, DP1, and the E2F1 /DP1 complex by ARF. Mol Cell Biol. 22: 8398–8408.

    Article  PubMed  CAS  Google Scholar 

  78. Carnero A, Hudson JD, Price CM, Beach DH (2000). p16 INK4a and p19ARF act in overlapping pathways in cellular immortalization. Nature Cell Biol. 2: 148–155.

    Google Scholar 

  79. Wei W, Hemmer RM, Sedivy JM (2001). Role of p14ARF in replicative and induced senescence of human fibroblasts. Mol Cell Biol. 21: 6748–6757.

    Article  PubMed  CAS  Google Scholar 

  80. Munro J, Stott FJ, Vousden KH, Peters G, Parkinson EK (1999). Role of the alternative INK4a proteins in human keratinocyte senescence: evidence for the specific inactivation of p16 INK4a upon immortalization. Cancer Res. 59: 2516–2521.

    PubMed  CAS  Google Scholar 

  81. Hwang SG, Lee D, Kim J, Seo T, Choe J (2002). Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 277: 2923–2930.

    Article  PubMed  CAS  Google Scholar 

  82. Lin WC, Lin FT, Nevins JR (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15: 1833–1844.

    PubMed  CAS  Google Scholar 

  83. Dimri GP, Itahana K, Acosta M, Campisi J (2000). Regulation of a senescence checkpoint response by the E2F1 transcription factorand p14ARF tumor suppressor. Mol Cell Biol. 20: 273–285.

    Article  PubMed  CAS  Google Scholar 

  84. Roninson IB (2002). Oncogenic functions of tumour suppressor p21 Waf1 /Cip1 /Sdi1: association with cellsenescence, tumour-promoting activities of stromalfibroblasts. Cancer Lett. 179: 1–4.

    Article  PubMed  CAS  Google Scholar 

  85. Chang BD, Watanabe K, Broude EV, et al. (2000). Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence and age-related diseases. Proc Natl Acad Sci USA 97: 4291–4296.

    Article  PubMed  CAS  Google Scholar 

  86. Hirama T, Koefiier HP (1995). Role of the cyclin-dependent kinase inhibitors in the development of cancer. Blood 86: 841–854.

    PubMed  CAS  Google Scholar 

  87. Herman JG, Jen J, Merlo A, Baylin SB (1996). Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 56: 722–727.

    PubMed  CAS  Google Scholar 

  88. Okamoto A, Hussain SP, Hagiwara K, et al. (1995). Mutations in the p16INK4/MTS1/CDKN2, p15INK4B/MTS2, and p18 genes in primary and metastatic lung cancer. Cancer Res. 55: 1448–1451.

    PubMed  CAS  Google Scholar 

  89. Fuxe J, Akusjarvi G, Goike HM, Roos G, Collins VP, Pettersson RF (2000). Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cellgrowth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Dier. 11: 373–384.

    CAS  Google Scholar 

  90. Hannon GJ, Beach D (1994). p15INK4B is a potentialeffector of TGF-beta-induced cellcycle arrest. Nature 371: 257–261.

    Google Scholar 

  91. Sangfelt O, Erickson S, Einhorn S, Grander D (1997). Induction of Cip/Kip and Ink4 cyclin dependent kinase inhibitors by interferon-alpha in hematopoietic celllines. Oncogene 14: 415–423.

    Article  PubMed  CAS  Google Scholar 

  92. Reynisdottir I, Polyak K, Iavarone A, Massague J (1995). Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cellcycle arrest in response to TGF-beta. Genes Dev. 9: 1831–1845.

    Article  PubMed  CAS  Google Scholar 

  93. Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A (2000). Defects in TGFß signaling overcome senescence of mouse keratinocytes expressing v-rasHa. Oncogene 19: 1698–1709.

    Article  PubMed  CAS  Google Scholar 

  94. RousselM (1999). The INK4 family of cellcycle inhibitors in cancer. Oncogene 18: 5311–5317.

    Article  Google Scholar 

  95. Collado M, Medema RH, Garcia-Cao I, et al. (2000). Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem. 275: 21960–21968.

    Article  PubMed  CAS  Google Scholar 

  96. Yoon G, Kim HJ, Yoon YS, Cho H, Lim IK, Lee JH (2002). Iron chelation-induced senescence-like growth arrest in hepatocyte celllines: association of transforming growth factor beta1 lTGF-ß1)-mediated p27 Kip1 expression. Biochem J 366: 613–621.

    Article  PubMed  CAS  Google Scholar 

  97. Crowe DL, Nguyen DC (2001). Rb, E2F-1 regulate telomerase activity in human cancer cells. Biochim Biophys Acta 1518: 1–6.

    Article  PubMed  CAS  Google Scholar 

  98. Harley CB, Futcher AB, Greider CW (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460.

    Article  PubMed  CAS  Google Scholar 

  99. Samper E, Flores JM, Blasco MA (2001). Restoration of telomerase activity rescues chromosomalinstability and premature aging in Terc- /- mice with short telomeres. EMBO Rep 2: 800–807.

    Article  PubMed  CAS  Google Scholar 

  100. Crowe DL, Nguyen DC, Tsang KJ, Kyo S (2001). E2F-1 represses transcription of the human telomerase reverse transcriptase gene. Nucleic Acids Res. 29: 2789–2794.

    Article  PubMed  CAS  Google Scholar 

  101. Won J, Yim J, Kim TK (2002). Opposing regulatory roles of E2F in human telomerase reverse transcriptase lhTERT) gene expression in human tumorand normalsomatic cells. FASEB J. 16: 1943–1945.

    PubMed  CAS  Google Scholar 

  102. Dyson N (1998). The regulation of E2F by pRB-family proteins. Genes Dev. 12: 2245–2262.

    Article  PubMed  CAS  Google Scholar 

  103. Henson JD, Neumann AA, Yeager TR, ReddelRR (2002). Alternative lengthening of telomeres in mammalian cells. Oncogene 21: 598–610.

    CAS  Google Scholar 

  104. Garcia-Cao M, Gonzalo S, Dean D, Blasco MA (2002). A role for the Rb family of proteins in controlling telomere length. Nature Genet. 32: 415–419.

    Article  PubMed  CAS  Google Scholar 

  105. Itahana K, Dimri G, Campisi J (2001). Regulation of cellular senescence by p53. Eur J Biochem. 268: 2784–2791.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Becker, T.M., Rizos, H. (2003). Regulation of Cellular Senescence by the Retinoblastoma Pathway. In: Kaul, S.C., Wadhwa, R. (eds) Aging of Cells in and Outside the Body. Biology of Aging and its Modulation, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0669-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0669-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6314-4

  • Online ISBN: 978-94-017-0669-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics