Skip to main content

Aging of Endothelial Cells

  • Chapter
  • 126 Accesses

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 2))

Abstract

The endothelium acts as a barrier between blood and vascular smooth muscle cells by virtue of its position within the blood vessel wall. Therefore, the functional integrity of the endothelium monolayer, which is composed of endothelial cells (ECs), is essential to the prevention of vascular leakage and the formation of atherosclerotic lesions [1, 2], which are often found in the human vasculature of the elderly [3, 4]. Aging is an independent risk factor for atherosclerotic cardiovascular disease, leading to progressive impairment of organ function [3, 5, 6]. Changes in the vascular system, including structural and functional alterations of the arterial wall and an increase in blood pressure, frequently are observed during aging [7, 8]. As an important source of vasoactive substances, such as endothelin-1 (ET-1) and nitric oxide (NO), vascular ECs play a key role in the control of vascular tone. Because EC functions change during aging, EC senescence is an important pathogenetic factor in age-related vascular dysfunction [9].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R (1995). Cell biology of atherosclerosis. Annu Rev Physiol. 57: 791–804.

    PubMed  CAS  Google Scholar 

  2. Hoffmann J, Haendeler J, Aicher A, et al. (2001). Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res. 89: 709–15.

    PubMed  CAS  Google Scholar 

  3. Zeiher AM, Drexler H, Saurbier B, Just H (1993). Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. JClin Invest. 92: 652–62.

    CAS  Google Scholar 

  4. Barton M, Cosentino F, Brandes R, Moreau P, Shaw S, Luscher T (1997). Anatomic heterogeneity of vascularaging: role of nitric oxide and endothelin. Hypertension 30: 817–24.

    PubMed  CAS  Google Scholar 

  5. Auerbach O, Hammond EC, Garfinkel L (1968). Thickening of walls of arterioles and small arteries in relation to age and smoking habits. NEngl JMed. 278: 980–4.

    CAS  Google Scholar 

  6. Kappel B, Olsen S (1980). Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. A quantitative study. Virchows Arch A Pathol Anat Histol. 387: 271–7.

    PubMed  CAS  Google Scholar 

  7. Dzau VJ, Gibbons GH, Morishita R, Pratt RE (1994). New perspectives in hypertension research. Potentials of vascular biology. Hypertension 23: 1132–40.

    PubMed  CAS  Google Scholar 

  8. Safar ME, Frohlich ED (1995). The arterial system in hypertension. A prospective view. Hypertension 26: 10–14.

    PubMed  CAS  Google Scholar 

  9. Dohi Y, Kojima M, Sato K, Luscher TF (1995). Age-related changes in vascular smooth muscle and endothelium. Drugs Aging 7: 278–91.

    PubMed  CAS  Google Scholar 

  10. Faragher RGA, Kipling D (1998). How might replicative senescence contribute to human ageing? Bioessays 20: 985–91.

    PubMed  CAS  Google Scholar 

  11. Yanagisawa M, Kurihara H, Kimura S, et al. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–15.

    PubMed  CAS  Google Scholar 

  12. Miyauchi T, Masaki T (1999). Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol. 61: 391–415.

    PubMed  CAS  Google Scholar 

  13. Benigni A, Perico N, Gaspari F, et al. (1991). Increased renal endothelin production in rats with reduced renal mass. Am JPhysiol. 260: F331–9.

    CAS  Google Scholar 

  14. Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett JC Jr (1991). Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. NEngl JMed. 325: 997–1001.

    CAS  Google Scholar 

  15. Schiffrin EL (1995). Endothelin: potential role in hypertension and vascular hypertrophy. Hypertension 25: 1135–43.

    PubMed  CAS  Google Scholar 

  16. Hocher B, Thone-Reinecke C, Rohmeiss P, et al. (1997). Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest. 99: 1380–9.

    PubMed  CAS  Google Scholar 

  17. Barton M, Haudenschild CC, d’Uscio LV, Shaw S, Munter K, Luscher TF (1998). Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 95: 14367–72.

    PubMed  CAS  Google Scholar 

  18. Barton M, d’Uscio L, Shaw S, Meyer P, Moreau P, Luscher TF (1998). ETlA) receptor blockade prevents increased tissue endothelin-1, vascular hypertrophy, and endothelial dysfunction in salt-sensitive hypertension. Hypertension 31: 499–504.

    PubMed  CAS  Google Scholar 

  19. Tokunaga O, Fan J, Watanabe T, Kobayashi M, Kumazaki T, Mitsui Y (1992). Endothelin: immunohistologic localization in aorta and biosynthesis by cultured human aortic endothelial cells. Lab Invest. 67: 210–17.

    PubMed  CAS  Google Scholar 

  20. Kumazaki T, Fujii T, Kobayashi M, Mitsui Y (1994). Aging-and growth-dependent modulation of endothelin-1 gene expression in human vascular endothelial cells. Exp Cell Res. 211: 6–11.

    PubMed  CAS  Google Scholar 

  21. Dohi Y, Luscher TF (1990). Aging differentially affects direct and indirect actions of endothelin-1 in perfused mesenteric arteries of the rat. Br JPharmacol. 100: 889–93.

    CAS  Google Scholar 

  22. Hahn AW, Resink TJ, Scott-Burden T, Powell J, Dohi Y, Buhler FR (1990). Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regul. 1: 649–59.

    PubMed  CAS  Google Scholar 

  23. Zoja C, Orisio S, Perico N, et al. (1991). Constitutive expression of endothelin gene in cultured human mesangial cells and its modulation by transforming growth factor-beta, thrombin, and a thromboxane A2 analogue. Lab Invest. 64: 16–20.

    PubMed  CAS  Google Scholar 

  24. Kohan DE (1996). Endothelins: renal tubule synthesis and actions. Clin Exp Pharmacol Physiol. 23: 337–44.

    PubMed  CAS  Google Scholar 

  25. Suzuki T, Kumazaki T, Mitsui Y (1993). Endothelin-1 is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem Biophys Res Commun. 191: 823–30.

    PubMed  CAS  Google Scholar 

  26. Ehrenreich H, Anderson RW, Fox CH, et al. (1990). Endothelins, peptides with potent vasoactive properties, are produced by human macrophages. JExp Med. 172: 1741–8.

    CAS  Google Scholar 

  27. Boulanger C, Luscher TF (1990). Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. JClin Invest. 85: 587–90.

    CAS  Google Scholar 

  28. Barton M, Lattmann T, d’Uscio LV, Luscher TF, Shaw S (2000). Inverse regulation of endothelin-1 and nitric oxide metabolites in tissue with aging: implications for the age-dependent increase of cardiorenal disease. J Cardiovasc Pharmacol. 36: S153–6.

    PubMed  CAS  Google Scholar 

  29. Forstermann U, Boissel JP, Kleinert H (1998). Expressional control of the `constitutive’ isoforms of nitric oxide synthase lNOS I and NOS III). FASEB J. 12: 773–90.

    PubMed  CAS  Google Scholar 

  30. Challah M, Nadaud S, Philippe M, et al. (1997). Circulating and cellular markers of endothelial dysfunction with aging in rats. Am JPhysiol. 273: H1941–8.

    CAS  Google Scholar 

  31. Tschudi MR, Barton M, Bersinger NA, et al. (1996). Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest. 98: 899–905.

    PubMed  CAS  Google Scholar 

  32. Forstermann U, Closs EI, Pollock JS, et al. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121–31.

    PubMed  CAS  Google Scholar 

  33. Mohaupt MG, Elzie JL, Ahn KY, Clapp WL, Wilcox CS, Kone BC (1994). Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int. 46: 653–65.

    PubMed  CAS  Google Scholar 

  34. Verbeuren TJ, Bonhomme E, Laubie M, Simonet S (1993). Evidence for induction of nonendothelial NO synthase in aortas of cholesterol-fed rabbits. J Cardiovasc Pharmacol. 21: 841–5.

    PubMed  CAS  Google Scholar 

  35. Kessler P, Bauersachs J, Busse R, Schini-Kerth VB (1997). Inhibition of inducible nitric oxide synthase restores endothelium-dependent relaxations in proinflammatory mediator-induced blood vessels. Arterioscler Thromb Vasc Biol. 17: 1746–55.

    PubMed  CAS  Google Scholar 

  36. Behr-Roussel D, Rupin A, Sansilvestri-Morel P, Fabiani JN, Verbeuren TJ (2000). Histochemical evidence for inducible nitric oxide synthase in advanced but nonruptured human atherosclerotic carotid arteries. Histochem J. 32: 41–51.

    PubMed  CAS  Google Scholar 

  37. Goettsch W, Lattmann T, Amann K, et al. (2001). Increased expression of endothelin-1 and inducible nitric oxide synthase isoform II in aging arteries in vivo: Implications for atherosclerosis. Biochem Biophys Res Commun. 280: 908–13.

    PubMed  CAS  Google Scholar 

  38. Kumazaki T, Kobayashi M, Mitsui Y (1993). Enhanced expression of fibronectin during in vivo cellularaging of human vascular endothelial cells and skin fibroblasts. Exp Cell Res. 205, 396–402.

    PubMed  CAS  Google Scholar 

  39. Kumazaki T, Wadhwa R, Kaul SC, Mitsui Y (1997). Expression of endothelin, fibronectin, and mortalin as aging and mortality markers. Exp Gerontol. 32: 95–103.

    PubMed  CAS  Google Scholar 

  40. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002). Endothelial cell senescence in human atherosclerosis. Role of telomere in endothelial dysfunction. Circulation 105: 1541–4.

    PubMed  CAS  Google Scholar 

  41. Shay JW, Wright WE (2001). Telomeres, and telomerase: implication for cancerand aging. Radiat Res. 155: 188–93.

    PubMed  CAS  Google Scholar 

  42. Minamino T, Mitsialis SA, Kourembanas S (2001). Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol Cell Biol. 21: 3336–42.

    PubMed  CAS  Google Scholar 

  43. Chang E, Harley CB (1995). Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 92: 11190–4.

    PubMed  CAS  Google Scholar 

  44. Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A (2000). Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 36: 195–200.

    PubMed  CAS  Google Scholar 

  45. Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H (2000). Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 152: 391–8.

    PubMed  CAS  Google Scholar 

  46. Kumar S, Millis AJT, Baglioni C (1992). Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proc Natl Acad Sci USA 89: 4683–7.

    PubMed  CAS  Google Scholar 

  47. Maier JAM, Voulalas P, Roeder D, Maciag T (1990). Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 249: 1570–4.

    PubMed  CAS  Google Scholar 

  48. Garfinkel S, Brown S, Wessendorf JH, Maciag T (1994). Post-transcriptional regulation of interleukin 1 alpha in various strains of young and senescent human umbilical vein endothelial cells. Proc Natl Acad Sci USA 91: 1559–63.

    PubMed  CAS  Google Scholar 

  49. Libby P, Ordovas JM, Biringi LK, Auger KR, Dinarello CA (1986). Inducible interleukin-1 gene expression in human vascular smooth muscle cells. J Clin Invest. 78: 1432–8.

    PubMed  CAS  Google Scholar 

  50. Stern DM, Bank I, Nawroth PP, et al. (1985). Self-regulation of procoagulant events on the endothelial cell surface. JExp Med. 162: 1223–35.

    CAS  Google Scholar 

  51. Malone DG, Pierce JH, Falko JP, Metcalfe DD (1988). Production of granulocytemacrophage colony-stimulating factor by primary cultures of unstimulated rat microvascular endothelial cells. Blood 71: 684–9.

    PubMed  CAS  Google Scholar 

  52. Mantovani A, Dejana E (1989). Cytokines as communication signals between leukocytes and endothelial cells. Immunol Today 10: 370–5.

    PubMed  CAS  Google Scholar 

  53. Montesano R, Mossaz A, Ryser JE, Orci L, Vassalli P (1984). Leukocyte interleukins induce cultured endothelial cells to produce a highly organized, glycosaminoglycan-rich pericellular matrix. J Cell Biol. 99: 1706–15.

    PubMed  CAS  Google Scholar 

  54. Montesano R, Orci L, Vassalli P (1985). Human endothelial cell cultures: phenotypic modulation by leukocyte interleukins. J Cell Physiol. 122: 424–34.

    PubMed  CAS  Google Scholar 

  55. Hla T, Maciag T (1990). Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem Biophys Res Commun. 167: 637–43.

    PubMed  CAS  Google Scholar 

  56. Hla T, Maciag T (1990). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. JBiol Chem. 265: 9308–13.

    CAS  Google Scholar 

  57. Hu VW, Xie HQ (1994). Interleukin-1 alpha suppresses gap junction-mediated intercellular communication in human endothelial cells. Exp Cell Res. 213: 218–23.

    PubMed  CAS  Google Scholar 

  58. Madri JA, Kocher O, Merwin JR, Bell L, Yannariello-Brown J (1989). The interactions of vascular cells with solid phase lmatrix) and soluble factors. J Cardiovasc Pharmacol. 14: S70–5.

    PubMed  Google Scholar 

  59. Brindle NP (1993). Growth factors in endothelial regeneration. Cardiovasc Res. 27: 1162–72.

    PubMed  CAS  Google Scholar 

  60. Cavallaro U, Castelli V, Monte UD, Soria MR (2000). Phenotypic alterations in senescent large-vessel and microvascular endothelial cells. Mol Cell Biol Res Commun. 4: 117–21.

    PubMed  CAS  Google Scholar 

  61. Auwerx J, Bouillon R, Collen D, Geboers J (1988). Induction of tissue-type plasminogen activator, plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8: 68–72.

    PubMed  CAS  Google Scholar 

  62. Erickson LA, Fici GJ, Lund JE, Boyle TP, Polites G, Marrotti KR (1990). Development of venous occlusions in mice transgenic for plasminogen activator inhibitor. Nature 346: 74–6.

    PubMed  CAS  Google Scholar 

  63. Zhang JC, Fabry A, Paucz L,Wojta J, Binder BR. (1996). Human fibroblasts downregulate plasminogen activator inhibitor type-1 in cultured human macrovascularand microvascular endothelial cells. Blood 88: 3880–6.

    CAS  Google Scholar 

  64. Murano S, Thweatt R, Shmookler Reis RJ, Jones RA, Moerman EJ, Goldstein S (1991). Diverse gene sequences are overexpressed in werner syndrome fibroblasts undergoing premature replicative senescence. Mol Cell Biol. 11: 3905–14.

    PubMed  CAS  Google Scholar 

  65. West MD, Shay JW, Wright WE, Linskens MHK (1996). Altered expression of plasminogen activatorand plasminogen activator inhibitor during cellular senescence. Exp Gerontol. 31: 175–93.

    PubMed  CAS  Google Scholar 

  66. Porter MB, Pereira-Smith OM, Smith JR (1990). Novel monoclonal antibodies identify antigenic determinants unique to cellular senescence. JCell Physiol. 142: 425–33.

    CAS  Google Scholar 

  67. Kumazaki T, Mitsui Y, Hamada K, Sumida H, Nishiyama M (1999). Detection of alternative splicing of fibronectin mRNA in a single cell. JCell Sci. 112: 1449–53.

    CAS  Google Scholar 

  68. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP (1997). CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 138: 707–17.

    PubMed  CAS  Google Scholar 

  69. Cajot JF, Bamat J, Bergonzelli GE, et al. (1990). Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinoma cells. Proc Natl Acad Sci USA 87: 6939–43.

    PubMed  CAS  Google Scholar 

  70. Matsuda T, Okamura K, Sato Y, et al. (1992). Decreased response to epidermal growth factor during cellular senescence in cultured human microvascular endothelial cells. J Cell Physiol. 150: 510–16.

    PubMed  CAS  Google Scholar 

  71. Ershler WB (1987). The change in aggressiveness of neoplasms with age. Geriatrics 42: 99–103.

    PubMed  CAS  Google Scholar 

  72. Folkman J (1992). The role of angiogenesis in tumor growth. Semin Cancer Biol. 3: 65–71.

    PubMed  CAS  Google Scholar 

  73. Dimmeler S, Zeiher AM (2000). Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res. 87: 434–9.

    PubMed  CAS  Google Scholar 

  74. Dimmeler S, Haendeler J, Galle J, Zeiher AM (1997). Oxidized low density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases: a mechanistic clue to the response to injury hypothesis. Circulation 95: 1760–3.

    PubMed  CAS  Google Scholar 

  75. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997). Angiotensin II induces apoptosis of human endothelial cells: protective effect of nitric oxide. Circ Res. 81: 970–6.

    PubMed  CAS  Google Scholar 

  76. Sata M, Walsh K (1998). Endothelial cell apoptosis induced by oxidized LDL is associated with the down-regulation of the cellular caspase inhibitor FLIP. JBiol Chem. 273: 33103–6.

    CAS  Google Scholar 

  77. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997). Suppression of apoptosis by nitric oxide via inhibition of ICE-like and CPP32-like proteases. JExp Med. 185: 601–8.

    CAS  Google Scholar 

  78. Haendeler J, Zeiher AM, Dimmeler S (1999). Nitric oxide and apoptosis. Vitamin Horm. 57: 49–77

    CAS  Google Scholar 

  79. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S (2000). Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res. 87: 540–2.

    PubMed  CAS  Google Scholar 

  80. Nicotera P, Brune B, Bagetta G (1997). Nitric oxide: inducer or suppressor of apoptosis? Trends Pharmacol Sci. 18: 189–90.

    PubMed  CAS  Google Scholar 

  81. Liu L, Stamler JS (1999). NO: an inhibitor of cell death. Cell Death Dier. 6: 937–42.

    CAS  Google Scholar 

  82. Nagata S (1997). Apoptosis by death factor. Cell 88: 355–65.

    PubMed  CAS  Google Scholar 

  83. Tenneti L, D’Emilia DM, Lipton SA. (1997). Suppression of neuronal apoptosis by Snitrosylation of caspases. Neurosci Lett. 236: 139–42.

    PubMed  CAS  Google Scholar 

  84. Li J, Billiar TR, Talanian RV, Kim YM (1997). Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 240: 419–24.

    PubMed  CAS  Google Scholar 

  85. Mannick JB, Hausladen A, Liu L, et al. (1999). Fas-induced caspase denitrosylation. Science 284: 651–4.

    PubMed  CAS  Google Scholar 

  86. Lucher TF, Noll G (1995). The pathogenesis of cardiovascular disease: role of the endothelium as a target and mediator. Atherosclerosis 118: S81–90.

    Google Scholar 

  87. Schachinger V, Britten MB, Zeiher AM (2000). Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101: 1899–906.

    PubMed  CAS  Google Scholar 

  88. Pagani F, Zagato L, Maier JA, Ragnotti G, Coviello DA, Vergani C (1993). Expression and alternative splicing of fibronectin mRNA in human diploid endothelial cells during aging in vitro. Biochim Biophys Acta 1173: 172–8.

    PubMed  CAS  Google Scholar 

  89. Comi P, Chiaramonte R, Maier JAM (1995). Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res. 219: 304–8.

    PubMed  CAS  Google Scholar 

  90. Sato I, Kaji K, Morita I, Nagao M, Murota S (1993). Augmentation of endothelin-1, prostacyclin and thromboxane A2 secretion associated with in vitro ageing in cultured human umbilical vein endothelial cells. Mech Ageing Dev. 71: 73–84.

    PubMed  CAS  Google Scholar 

  91. Augustin-Voss HG, Voss AK, Pauli BU (1993). Senescence of aortic endothelial cells in culture: effects of basic fibroblast growth factor expression on cell phenotype, migration, and proliferation. JCell Physiol. 157: 279–88.

    CAS  Google Scholar 

  92. Sato I, Morita I, Kaji K, Ikeda M, Nagao M, Murota S (1993). Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem Biophys Res Commun. 195: 1070–6.

    PubMed  CAS  Google Scholar 

  93. Reed MJ, Corsa AC, Kudravi SA, McCormick RS, Arthur WT (2000). A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J Cell Biochem. 77: 116–26.

    PubMed  CAS  Google Scholar 

  94. Hasegawa N, Yamamoto K (1993). A step in the process of prostacyclin production whose decline leads to the age-related decrease in production by human umbilical vein endothelial cells in culture. Mech Ageing Dev. 69: 167–78.

    PubMed  CAS  Google Scholar 

  95. Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Durr P. (2001). Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Exp Gerontol. 36: 1327–47.

    PubMed  CAS  Google Scholar 

  96. Tang J, Gordon GM, Nickoloff BJ, Foreman KE (2002). The helix-loop-helix protein Id-1 delays onset of replicative senescence in human endothelial cells. Lab Invest. 82: 1073–9.

    PubMed  CAS  Google Scholar 

  97. Whikehart DR, Register SJ, Chang Q, Montgomery B (2000). Relationship of telomeres and p53 in aging bovine corneal endothelial cell cultures. Invest Ophthalmol Vis Sci. 41: 1070–5.

    PubMed  CAS  Google Scholar 

  98. Maier JA, Statuto M, Ragnotti G (1993). Senescence stimulates U937-endothelial cell interactions. Exp Cell Res. 208: 270–4.

    PubMed  CAS  Google Scholar 

  99. Everett JP, Shipley GD, Mauck KA, Wagner CR, Morris TE, Hosenpud JD (1994). Phenotypic variations in resting and activated levels of ICAM-1 expression by cultured human aortic endothelial cells. Transplantation 58: 946–50.

    PubMed  CAS  Google Scholar 

  100. Fujii T, Kumazaki T, Nagasawa T, Kobayashi M, Abe T, Mitsui Y (1996). Modulation of hemopoietic factor production in relation to endothelial cell aging by interleukin-1 induction. Exp Cell Res. 226: 356–62.

    PubMed  CAS  Google Scholar 

  101. Johnson TE, Umbenhauer DR, Hill R, et al. (1992). Karyotypic and phenotypic changes during in vitro aging of human endothelial cells. J Cell Physiol. 150: 17–27.

    PubMed  CAS  Google Scholar 

  102. Muller AM, Skrzynski C, Nesslinger M, Skipka G, Muller KM (2002). Correlation of age with in vivo expression of endothelial markers. Exp Gerontol. 37: 713–19.

    PubMed  CAS  Google Scholar 

  103. van der Loo B, Fenton MJ, Erusalimsky JD (1998). Cytochemical detection of a senescence-associated beta-galactosidase in endothelial, smooth muscle cells from human and rabbit blood vessels. Exp Cell Res. 241: 309–15.

    PubMed  Google Scholar 

  104. Niu S, MatsudaT (1992). Endothelial cell senescence inhibits unidirectional endothelialization in vitro. Cell Transplant. 1: 355–64.

    PubMed  CAS  Google Scholar 

  105. Swift ME, Kleinman HK, DiPietro LA (1999). Impaired wound repairand delayed angiogenesis in aged mice. Lab Invest. 79: 1479–87.

    PubMed  CAS  Google Scholar 

  106. Xie HQ, Hu VW (1994). Modulation of gap junctions in senescent endothelial cells. Exp Cell Res. 214: 172–6.

    PubMed  CAS  Google Scholar 

  107. Phillips GD, Stone AM (1994). PDGF-BB induced chemotaxis is impaired in aged capillary endothelial cells. Mech Ageing Dev. 73: 189–96.

    PubMed  CAS  Google Scholar 

  108. Tokunaga O, Satoh T, Yamasaki F, Wu L (1998). Multinucleated variant endothelial cells lMVECs) in human aorta: chromosomal aneuploidy and elevated uptake of LDL. Semin Thromb Hemost. 24: 279–84.

    PubMed  CAS  Google Scholar 

  109. Quinlan KL, Song IS, Bunnett NW, et al. (1998). Neuropeptide regulation of human dermal microvascular endothelial cell ICAM-1 expression and function. Am JPhysiol. 275: C1580–90.

    CAS  Google Scholar 

  110. Donoso MV, Fournier A, Peschke H, Faundez H, Domenech R, Huidobro T, Toro JP (1994). Aging differentially modifies arterial sensitivity to endothelin-1 and 5-hydroxytryptamine: studies in dog coronary arteries and rat arterial mesenteric bed. Peptides. 15: 1489–95.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumazaki, T. (2003). Aging of Endothelial Cells. In: Kaul, S.C., Wadhwa, R. (eds) Aging of Cells in and Outside the Body. Biology of Aging and its Modulation, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0669-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0669-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6314-4

  • Online ISBN: 978-94-017-0669-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics