Skip to main content

Molecular Chaperones and Cellular Aging

  • Chapter
Aging of Cells in and Outside the Body

Part of the book series: Biology of Aging and its Modulation ((BIMO,volume 2))

  • 123 Accesses

Summary

Chaperones are phylogeneticaliy conserved proteins involved in the proper folding of nascent proteins and repair of damaged or misfolded proteins. They are ubiquitously expressed and have been shown to play important roles in many cellular processes in addition to protein synthesis and folding. Chaperones are important for intracellular protein transport, membrane translocation and cytoprotection against many environmental and physiological insults. Their decrease in expression during aging could account for numerous features of cellular senescence. As many proteins have been shown to have chaperone activity, we focus here on heat shock proteins (Hsp), a major class of chaperones, and on their involvement in the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sohal RS (2002). Role of oxidative stress and protein oxidation in the aging process. Free Rad Biol Med. 33: 37–44.

    PubMed  CAS  Google Scholar 

  2. Lin YJ, Seroude L, Benzer S (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–6.

    PubMed  CAS  Google Scholar 

  3. Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000). Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290: 2137–40.

    CAS  Google Scholar 

  4. Zoo S, Meadows S, Sharp L, Jan LY, Nung Jan Y (2000). Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97: 13726–31.

    Google Scholar 

  5. Chavous DA, Jackson FR, O’Connor CM (2001). Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci USA 98: 14814–18.

    PubMed  CAS  Google Scholar 

  6. Ekengren S, Tryselius Y, Dushay MS, Liu G, Steiner H, Hultmark D (2001). A humoral stress response in Drosophila. Curr Biol. 11: 714–18.

    CAS  Google Scholar 

  7. Seong KH, Matsuo T, Fuyama Y, Aigaki T L2001). Neural-specific overexpression of Drosophila plenty of SH3s (DPOSH) extends the longevity of adult flies. Biogerontology 2: 271–81.

    Google Scholar 

  8. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–10.

    PubMed  CAS  Google Scholar 

  9. Brack C, Bechter-Thuring E, Labuhn M (1997). N-acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci. 53: 960–6.

    CAS  Google Scholar 

  10. Anisimov VN, Mylnikov SV, Khavinson VK (1998). Pineal peptide preparation epithalamin increases the lifespan of fruit flies, mice and rats. Mech Ageing Dev. 103: 123–32.

    PubMed  CAS  Google Scholar 

  11. Khavinson VK, Izmaylov DM, Obukhova LK, Malinin VV (2000). Effect of epitalon on the lifespan increase in Drosophila melanogaster. Mech Ageing Dev. 120: 141–9.

    CAS  Google Scholar 

  12. Bonilia E, Medina-Leendertz S, Diaz S (2002). Extension of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Exp Gerontol. 37: 629–38.

    Google Scholar 

  13. Kang HL, Benzer S, Min KT L2002). Life extension in Drosophila by feeding a drug. Proc Natl Acad Sci USA 99: 838–43.

    Google Scholar 

  14. Feder ME, Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 61: 243–82.

    PubMed  CAS  Google Scholar 

  15. Verbeke P, Fonager J, Clark BFC, Rattan SIS (2001). Heat shock response and ageing: mechanisms and applications. Cell Biol Int. 25: 845–57.

    PubMed  CAS  Google Scholar 

  16. Berger EM, Woodward MP (1983). Smali heat shock proteins in Drosophila may confer thermal tolerance. Exp Cell Res. 147: 437–42.

    PubMed  CAS  Google Scholar 

  17. Landry J, Chre~tien P, Lambert H, Hickey E, Weber LA (1989). Heat shock resistance conferred by expression of the human HSP27 gene in rodent celis. J Cell Biol. 109: 7–15.

    PubMed  CAS  Google Scholar 

  18. Squires C, Pedersen S, Ross BM, Squires C (1991). ClpB is the Escherichia coli heat shock protein F84.1. JBacteriol. 173: 4254–64.

    CAS  Google Scholar 

  19. Kitagawa M, Wada C, Yoshioka S, Yura T L1991). Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlied by a heat shock sigma factor (sigma 32). JBacteriol. 173L 4247–53.

    Google Scholar 

  20. Roliet E, Lavoie JN, Landry J, Tanguay RM (1992). Expression of Drosophila’s 27 kDa heat shock protein into rodent celis confers thermal resistance. Biochem Biophys Res Commun. 185: 116–20.

    Google Scholar 

  21. Laxkowska E, Kuczynska-Wisnik D, Skorko-Glonek J, Taylor A (1996). Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol Microbiol. 22: 555–71.

    Google Scholar 

  22. Mogk A, Tomoyasu T, Goloubinoff P, et al. (1999). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18: 6934–49.

    PubMed  CAS  Google Scholar 

  23. Keeler SJ, Boettger CM, Haynes JG, et al. (2000). Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol. 123: 1121–32.

    PubMed  CAS  Google Scholar 

  24. Mehlen P, Briolay J, Smith L, et al. (1993). Analysis of the resistance to heat and hydrogen peroxide stresses in COS celis transiently expressing wild type or deletion mutants of the Drosophila 27-kDa heat-shock protein. Eur JBiochem. 215: 277–84.

    CAS  Google Scholar 

  25. Mehlen P, Previlie X, Chareyron P, Briolay J, K(emenz R, Arrigo AP (1995). Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. Jlmmunol. 154: 363–74.

    PubMed  CAS  Google Scholar 

  26. Mehlen P, Schulze-Osthoff K, Arrigo AP (1996). Smali stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporineinduced celi death. JBiol Chem. 271: 16510–14.

    CAS  Google Scholar 

  27. Brar BK, Stephanou A, Wagstaff MJ, et al. (1999). Heat shock proteins delivered with a virus vector can protect cardiac celis against apoptosis as weli as against thermal or hypoxic stress. JMol Cell Cardiol. 31: 135–46.

    CAS  Google Scholar 

  28. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 13: 2061–70.

    PubMed  CAS  Google Scholar 

  29. Bruey JM, Ducasse C, Bonniaud P, et al. (2000). Hsp27. negatively regulates celi death by interacting with cytochrome c. Nat Cell Biol. 2: 645–52.

    PubMed  CAS  Google Scholar 

  30. Charette SJ, Lavoie JN, Lambert H, Landry J (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol. 20: 7602–12.

    PubMed  CAS  Google Scholar 

  31. Creagh EM, Carmody RJ, Cotter TG (2000). Heat shock protein 70 inhibits caspasedependent and independent apoptosis in Jurkat T celis. Exp Cell Res. 257: 58–66.

    PubMed  CAS  Google Scholar 

  32. Mosser DD, Caron AW, Bourget L, et al. (2000). The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol. 20: 7146–59.

    PubMed  CAS  Google Scholar 

  33. Haslbeck M (2002). sHsps and their role in the chaperone network. Cell Mol Life Sci. 59: 1649–57.

    Google Scholar 

  34. Concannon CG, Gorman AM, Samali A (2003). On the role of Hsp27 in regulating apoptosis. Apoptosis 8: 61–70.

    PubMed  CAS  Google Scholar 

  35. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999). Presence of a preapoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat celis. EMBO J. 18: 2040–8.

    PubMed  CAS  Google Scholar 

  36. Xanthoudakis S, Nicholson DW (2000). Heat-shock proteins as death determinants. Nat Cell Biol. 2: E163–5.

    PubMed  CAS  Google Scholar 

  37. Gupta S, Know(ton AA (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106: 2727–33

    CAS  Google Scholar 

  38. Ehrnsperger M, Gaestel M, Buchner J (2000). Analysis of chaperone properties of smali Hsp’s. Methods Mol Biol. 99: 421–9.

    PubMed  CAS  Google Scholar 

  39. Neupert W (1997). Protein import into mitochondria. Annu Rev Biochem. 66: 863–917.

    PubMed  CAS  Google Scholar 

  40. Bukau B, Horwich AL (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–66.

    PubMed  CAS  Google Scholar 

  41. Beck FX, Neuhofer W, Muller W (2000). Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am JPhysiol Renal Physiol. 279: F203–15.

    CAS  Google Scholar 

  42. Hartl FU, Hayer-Hartl M (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852–8.

    PubMed  CAS  Google Scholar 

  43. Lee KH, Kim HS, Jeong HS, Lee YS (2002). Chaperonin GroESL mediates the protein folding of human liver mitochondrial aldehyde dehydrogenase in Escherichia coli. Biochem Biophys Res Commun. 298: 216–24.

    PubMed  CAS  Google Scholar 

  44. Voos W, Rottgers K (2002). Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592: 51–62.

    PubMed  CAS  Google Scholar 

  45. Zavilgelsky GB, Kotova VY, Mazhul’ MM, Manukhov IV (2002). Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial (uciferase in Escherichia coli celis. Biochemistry 67: 986–92

    PubMed  CAS  Google Scholar 

  46. Ngosuwan J, Wang NM, Fung KL, Chirico WJ (2002). Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. JBiol Chem. 278: 7034–42.

    Google Scholar 

  47. Imamura T, Haruta T, Takata Y, et al. (1998). Involvement of heat shock protein 90 in the degradation of mutant insulin receptors by the proteasome. JBiol Chem. 273: 11183–8.

    CAS  Google Scholar 

  48. Hoskins JR, Yanagihara K, Mizuuchi K, Wickner S (2002). ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci USA 99: 11037–42.

    PubMed  CAS  Google Scholar 

  49. Jin T, Gu Y, Zanusso G, et al. (2000). The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome. JBiol Chem. 275: 38699–704.

    CAS  Google Scholar 

  50. Luders J, Demand J, Hohfeld J (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. JBiol Chem. 275: 4613–17.

    CAS  Google Scholar 

  51. Burton BM, Williams TL, Baker TA (2001). ClpX-mediated remodelling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Mol Cell 8: 449–54.

    PubMed  CAS  Google Scholar 

  52. Conneli P, Ballinger CA, Jiang J, et al. (2001). The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol. 3: 93–6.

    Google Scholar 

  53. Hoskins JR, Singh SK, Maurizi MR, Wickner S (2000). Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc Natl Acad Sci USA 97: 8892–7.

    PubMed  CAS  Google Scholar 

  54. Rottgers K, Zufali N, Guiard B, Voos W (2002). The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J Biol Chem. 277: 45829–37.

    PubMed  CAS  Google Scholar 

  55. Rutherford SL, Lindquist S (1998). Hsp90 as a capacitor for morphological evolution. Nature 396: 336–42.

    PubMed  CAS  Google Scholar 

  56. Solars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003). Evidence foran epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 33: 70–4.

    Google Scholar 

  57. Abbas-Terki T, Briand PA, Donze O, Picard D (2002). The Hsp90 co-chaperones Cdc37 and Sti1 interact physicaliy and geneticaliy. Biol Chem. 383: 1335–42.

    PubMed  CAS  Google Scholar 

  58. Angeletti PC, Walker D, Panganiban AT L2002). Smali glutamine-rich protein/viral protein U-binding protein is a novel cochaperone that affects heat shock protein 70 activity. Cell Stress Chaperones 7: 258–68.

    Google Scholar 

  59. Tasab M, Batten MR, Bulleid NJ (2000). Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procoliagen. EMBO J. 19: 2204–11.

    PubMed  CAS  Google Scholar 

  60. Solti C, Csermely P (2000). Molecular chaperones and the aging process. Biogerontology 1: 225–33.

    Google Scholar 

  61. Solti C, Csermely P (2002). Chaperones come of age. Cell Stress Chaperones 7: 186–90.

    Google Scholar 

  62. Wright HT L1991). Nonenzymatic deamination of asparaginyl and glutaminyl redidues in proteins. Crit Rev Biochem Mol Biol. 26: 1–52.

    Google Scholar 

  63. Sun H, Gao J, Ferrington DA Biesiada H, Williams TD, Squier TC (1999). Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 38: 105–12.

    PubMed  CAS  Google Scholar 

  64. Das N, Levine RL, Orr WC, Sohal RS (2001). Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J. 360: 209–16.

    CAS  Google Scholar 

  65. Bence NF, Sampat RM, Kopito RR (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–5.

    PubMed  CAS  Google Scholar 

  66. Bulteau A-L, Verbeke P, Petropoulos I, Chaffotte A-F, Friguet B (2001). Proteasome inhibition in glyoxal-treated fibroblasts and resistance of glycated glucose-6-phosphate dehydrogenase to 20S proteasome degradation in vitro. JBiol Chem. 274: 662–8.

    Google Scholar 

  67. Bucciantini M, Giannoni E, Chiti F, et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416: 507–11.

    PubMed  CAS  Google Scholar 

  68. ELlis RJ, Pinheiro TJ (2002). Danger misfolding proteins. Nature 416: 483–4.

    PubMed  CAS  Google Scholar 

  69. Macario AJL, de Macario EC (2002). Sick chaperones and ageing: a perspective. Ageing Res Rev. 1: 295–311.

    PubMed  CAS  Google Scholar 

  70. Fleming JE, Walton JK, Dubitski R, Bensch KG (1988). Aging results in an unusual expression of Drosophila heat shock proteins. Proc Natl Acad Sci USA 85: 4099–103.

    Google Scholar 

  71. Finkel T, Holbrook NJ (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–47.

    PubMed  CAS  Google Scholar 

  72. Locke M, Tanguay RM (1996). Diminished heat shock response in the aged myocardium. Cell Stress Chaperones 1: 251–60.

    PubMed  CAS  Google Scholar 

  73. Garigan D, Hsu A-L, Fraser AG, Kamath TS, Ahringer J, Kenyon C (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factorand bacterial proliferation. Genetics 161: 1101–12.

    PubMed  CAS  Google Scholar 

  74. Rao DV, Watson K, Jones GL (1999). Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Ageing Dev. 107: 105–18.

    PubMed  CAS  Google Scholar 

  75. Nakanishi Y, Yasumoto K (1997). Induction after administering paraquat of heme oxidgenase-1 and heat shock protein in the liver of senescence-accelerated mice. Biosci Biotechnol Biochem. 61: 1302–6.

    PubMed  CAS  Google Scholar 

  76. Fargnoli J, Kunisada T, Fornace A J Jr, Schneider EL, Holbrook NJ (1990). Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in celis of aged rats. Proc Natl Acad Sci USA 87: 846–50.

    PubMed  CAS  Google Scholar 

  77. Blake MJ, Udelsman R, Feulner GJ, Norton DD, Holbrook NJ (1991). Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci USA 88: 9873–7.

    PubMed  CAS  Google Scholar 

  78. Kregel KC, Moseley PL, Skidmore R, Gutierrez JA, Guerriero V (1995). HSP70 accumulation in tissues of heat-stressed rats in blunted with advancing age. J Appl Physiol. 79: 1673–8.

    PubMed  CAS  Google Scholar 

  79. Piotrowicz RS, Weber LA, Hickey E, Levin EG (1995). Accelerated growth and senescence of arterial celis expressing the smali molecular weight heat-shock protein Hsp27. FASEB J. 9: 1079–84.

    PubMed  CAS  Google Scholar 

  80. Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993). Identification of a novel member of mouse hsp70 family. Its association with celiular mortal phenotype. J Biol Chem. 268: 6615–21.

    PubMed  CAS  Google Scholar 

  81. Wadhwa R, Kaul SC, Sugimoto Y, Mitsui Y (1993). Induction of celiular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 celis. JBiol Chem. 268: 22239–42.

    CAS  Google Scholar 

  82. Holt SE, Aisner DL, Baur J, et al. (1999). Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13: 817–26.

    PubMed  CAS  Google Scholar 

  83. Cherkasova V, Ayyadevara S, Egilmez N, Shmookler Reis R (2000). Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcriptlevels in long-lived, aged, or starved adults. JMol Biol. 300: 433–48.

    CAS  Google Scholar 

  84. Cherian M, Abraham WC (1995). Decreased molecular chaperone property of alphacrystallin due to posttranslational modifications. Biochem Biophys Res Commun. 208: 675–9.

    PubMed  CAS  Google Scholar 

  85. Derham BK, Harding JJ (1997). Effect of aging on the chaperone-like function of human a-crystallin assessed by three methods. Biochem J. 328: 763–8.

    PubMed  CAS  Google Scholar 

  86. Wheeler JC, Bieschke ET, Tower J (1995). Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci USA 92: 10408–12.

    PubMed  CAS  Google Scholar 

  87. Tatar M, Khazaeli AA, Curtsinger JW (1997). Chaperoning extended life. Nature 390: 30.

    PubMed  CAS  Google Scholar 

  88. Maielio M, Boeri D, Sampietro L, Pronzato MA, Odetti P, Marinari UM (1998). Basal synthesis of heat shock protein 70 increases with age in rat kidneys. Gerontology 44: 15–20.

    Google Scholar 

  89. Locke M (2000). Heat shock transcription factor activation and Hsp72 accumulation in aged skeletal muscle. Cell Stress Chaperones 5: 45–51.

    PubMed  CAS  Google Scholar 

  90. Cuervo AM, Dice JF (2000). Age-related decline in chaperone-mediated autophagy. J Biol Chem. 275: 31505–13.

    PubMed  CAS  Google Scholar 

  91. Wu B, Gu MJ, Heydari AR, Richardson A (1993). Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci USA 89: 9112–16.

    Google Scholar 

  92. Krawczyk Z, Szymik N (1989). Effect of age and busulphan treatment of the hsp70 generelated transcript level in rat testes. Int JAndrol. 12: 72–9.

    CAS  Google Scholar 

  93. Morimoto RI, Sarge KD, Abravaya K (1992). Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. JBiol Chem. 267: 21987–90.

    CAS  Google Scholar 

  94. King V, Tower J (1999). Aging-specific expression of Drosophila hsp22. Dev Biol. 207: 107–18.

    PubMed  CAS  Google Scholar 

  95. Morrow G, Inaguma Y, Kato K, Tanguay RM (2000). The smali heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. JBiol Chem. 275: 31204–10.

    CAS  Google Scholar 

  96. Beaulieu JF, Arrigo AP, Tanguay RM (1989). Interaction of Drosophila 27,000 Mr heat-shock protein with the nucleus of heat-shocked and ecdysone-stimulated culture celis. J Cell Sci. 92: 29–36.

    PubMed  Google Scholar 

  97. Tanguay RM, Joanisse DR, InagumaY, Michaud S (1999). Smali heat shock proteins: in search of functions in vivo. In: Storey KB, ed. Environmental Stress and Gene Regulation. Oxford: Bios Scientific Publishers, pp. 125–38.

    Google Scholar 

  98. Michaud S, Morrow G, Marchand J, Tanguay RM (2002) Drosophila smali heat shock proteins: celi and organelie-specific chaperones? Prog Mol Subcell Biol. 28: 79–101.

    PubMed  CAS  Google Scholar 

  99. Kurapati R, Passananti HB, Rose MR, Tower J (2000). Increased hsp22 RNA (evels in Drosophila lines geneticaliy selected for increased longevity. JGerontol. 55A: B552–9.

    CAS  Google Scholar 

  100. Dillin A, Hsu A-L, Arantes-Oliveira N, et al. (2002). Rates of behaviourand aging specified by mitochondrial function during development. Science 298: 2398–401.

    PubMed  CAS  Google Scholar 

  101. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 33: 40–8.

    PubMed  CAS  Google Scholar 

  102. Lithgow GJ, White TM, Melov S, Johnson TE (1995). Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 754–4.

    Google Scholar 

  103. Khazaeli AA, Tatar M, PLetcher SD, Curtsinger JW (1997). Heat-induced longevity extension in Drosophila. I. Heat treatment, mortality, and thermotolerance. J Gerontol A Biol Sci Med Sci. 52: B48–52.

    PubMed  CAS  Google Scholar 

  104. Rattan SI (1998). Repeated mild heat shock delays ageing in cultured human skin fibroblasts. Biochem Mol Biol Int. 45: 753–9.

    PubMed  CAS  Google Scholar 

  105. Minois N, Khazaeli AA, Curtsinger JW (2001). Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp Gerontol. 36: 1137–53.

    PubMed  CAS  Google Scholar 

  106. Butov A, Johnson T, Cypser J, et al. (2001). Hormesis and debilitation effects in stress experiments using the nematode worm Caenorhabditis elegans: the model of balance between celi damage and HSP levels. Exp Gerontol. 37: 57–66.

    PubMed  CAS  Google Scholar 

  107. Le Bourg E, Valenti P, Lucchetta P, Payre F (2001). Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster. Biogerontology 2: 155–64.

    PubMed  Google Scholar 

  108. Walker GA, White TM, McColi G, et al. (2001). Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans. JGerontol. 56A, B281–7.

    CAS  Google Scholar 

  109. Parkes TL, ELia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 19: 171–4.

    PubMed  CAS  Google Scholar 

  110. Sun J, Tower J (1999). FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol. 19: 216–28.

    PubMed  CAS  Google Scholar 

  111. Seong K- H, OgashiwaT, Matsuo T, FuyamaY, Aigaki T L2001). Application of the gene search system to screen for longevity genes in Drosophila. Biogerontology 2: 209–17.

    Google Scholar 

  112. Sun J, Folk D, Brad(ey TJ, Tower J (2002). Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161: 661–72.

    CAS  Google Scholar 

  113. Tower J. (2000). Transgenic methods for increasing Drosophila life span. Mech Ageing Dev. 118: 1–14.

    PubMed  CAS  Google Scholar 

  114. Boulianne GL (2001). Neuronal regulation of lifespan: clues from flies and worms. Mech Ageing Dev. 122: 883–94.

    PubMed  CAS  Google Scholar 

  115. Chong KY, Lai CC, Lilie S, Chang C, Su CY (1998). Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. J Mol Cell Cardiol. 30: 599–608.

    PubMed  CAS  Google Scholar 

  116. Yokoyama K, Fukumoto K, Murakami T, et al. (2002). Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett. 516: 53–7.

    PubMed  CAS  Google Scholar 

  117. Kaul S, Reddel RR, Sugihara T, Mitsui Y, Wadhwa R (2000). Inactivation of p53 and life span extension of human diploid fibroblasts by mot-2. FEBS Lett. 474: 159–64.

    CAS  Google Scholar 

  118. Friguet B, Stadman ER, Szweda LI (1994). Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. JBiol Chem. 269: 21639–43.

    CAS  Google Scholar 

  119. Lee H-C, Wei Y-H (2001). Mitochondrial alterations, celiular response to oxidative stress and defective degradation of proteins in aging. Biogerontology 2: 231–44.

    PubMed  CAS  Google Scholar 

  120. Bracken AP, Bond U (1999). Reassembly and protection of smali nuclear ribonucleoprotein particles by heat shock proteins in yeast celis. RNA. 5: 1586–96.

    PubMed  CAS  Google Scholar 

  121. Helmbrecht K, Zeise E, Rensing L (2000). Chaperones in celi cycle regulation and mitogenic signal transduction: a review. Cell Proli. 33: 341–65.

    CAS  Google Scholar 

  122. Laszlo A (1992). The effects of hyperthermia on mammalian celi structure and function. Cell Proli. 25: 59–87.

    CAS  Google Scholar 

  123. Buchner J (1999). Hsp90 and Co a holding for folding. Trends Biochem Sci. 24: 136–41.

    PubMed  CAS  Google Scholar 

  124. Galigniana MD, Radanyi C, Renoir J-M, Housley PR, Pratt WB (2001). Evidence that the peptidylprolyl isomerase domain of the Hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. JBiol Chem. 276, 14884–9.

    CAS  Google Scholar 

  125. Udelsman R, Blake MJ, Stagg CA, Li DG, Putney DJ, Holbrook NJ (1993). Vascular heat shock protein expression in response to stress. Endocrine and autonomic regulation of this age-dependent response. J Clin Invest. 91: 464–73.

    Google Scholar 

  126. Tobaden S, Thakur P, Fernandez-Chacon R, Suedhof TC, Rettig J, Stahl B (2001). A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31: 987–99.

    Google Scholar 

  127. Morgan JR, Prasad K, Jin S, Augustine GJ, Lafer EM (2001). Uncoating of clathrincoated vesicles in presynaptic terminals: roles for Hsp70 and auxilin. Neuron 32: 289–300.

    PubMed  CAS  Google Scholar 

  128. Muchowski PJ (2002). Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones. Neuron 35: 9–12.

    PubMed  CAS  Google Scholar 

  129. Harding JJ (2002). Viewing molecular mechanisms of ageing through a lens. Ageing Res Rev. 1: 465–79.

    PubMed  CAS  Google Scholar 

  130. Link CD (2001). Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech Ageing Dev. 122: 1639–49.

    PubMed  CAS  Google Scholar 

  131. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002). Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 99: 16412–18.

    PubMed  CAS  Google Scholar 

  132. Soti C, Csermely P (2002). Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem Int. 41: 383–9.

    PubMed  CAS  Google Scholar 

  133. Satyal SH, Schmidt E, Kitagawa K, et al. (2000). Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97: 5750–5.

    PubMed  CAS  Google Scholar 

  134. Chan HY, Warrick JM, Gray-Board BL, Paulson JL, Bonini NM (2000). Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet. 9: 2811–20.

    Google Scholar 

  135. Prolia TA, Mattson MP (2001). Molecular mechanisms of brain aging and neurodegenerative disorders: (essons from dietary restriction. Trends Neurosci. 24: S21–31.

    Google Scholar 

  136. Walker GA, Walker DW, Lithgow JL (1998). Genes that determines both thermotolerance and rate of aging in Caenorhabditis elegans. Ann NYAcad Sci. 851: 444–9.

    CAS  Google Scholar 

  137. Jakob U, Gaestel M, Engel K, Buchner J (1993). Smali heat shock proteins are molecular chaperones. JBiol Chem. 1993 268: 1517–20.

    Google Scholar 

  138. Mounier N, Arrigo AP (2002). Actin cytoskeleton and smali heat shock proteins: how do they interact? Cell Stress Chaperones 7: 167–76.

    PubMed  CAS  Google Scholar 

  139. Tsvetkova NM, Horvath I, Torok Z, et al. (2002). Smali heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci USA 99: 13504–9.

    PubMed  CAS  Google Scholar 

  140. Cabiscol E, Belli G, Tamarit J, Echave P, Herrero E, Ros J (2002). Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. JBiol Chem. 277: 44531–8.

    CAS  Google Scholar 

  141. Ou J, Ou Z, Ackerman AW, OLdham KT, Pritchard KA (2003). Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial celis uncouples endothelial nitric oxide synthase activity. Free Radic Biol Med. 34: 269–76.

    PubMed  CAS  Google Scholar 

  142. Takahashi S, Mendelsohn ME (2003). Calmodulin-dependent and independent activation of endothelial nitric oxide synthase by heat shock protein 90. J Biol Chem. 278: 9339–44.

    PubMed  CAS  Google Scholar 

  143. Boudeau J, Deak M, Lawlor MA, Morrice NA, ALessi DR (2002). Hsp90/Cdc37 interact with LKB1 and regulate its stability. Biochem J. 370: 849–57.

    Google Scholar 

  144. Joseph K, Tholanikunnel BG, Kaplan AP (2002). Activation of the bradykinin-forming cascade on endothelial celis: a role for heat shock protein 90. Int Immunopharmacol. 2: 1851–9.

    PubMed  CAS  Google Scholar 

  145. Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L (2002). Heat shock protein 90 modulated the unfolded protein response by stabilizing IRE1alpha. Mol Cell Biol. 22: 8506–13.

    PubMed  CAS  Google Scholar 

  146. Picard D (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 59: 1640–8.

    PubMed  CAS  Google Scholar 

  147. Vanden Berghe T, Kalai M, Van Loo G, Declercq W, Vandenabeele P (2002). Disruption of HSP90 function reverts TNF-induced necrosis to apoptosis. JBiol Chem. 278: 5622–9.

    Google Scholar 

  148. Wang C, Chen J (2003). Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. JBiol Chem. 278: 2066–71.

    CAS  Google Scholar 

  149. Gavrilovich Zgoda V, Arison B, Mkrtchian S, Igelman-Sundberg M, ALmira Coreeia M (2002). Hemin-mediated restoration of aliylisopropylacetamide-inactivated CYP2B1: a role for glutathione and GRP94 in the heme-protein assembly. Arch Biochem Biophys. 408: 58–68.

    PubMed  Google Scholar 

  150. Krzewska J, Langer T, Liberek K (2001). Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett. 489: 92–6.

    PubMed  CAS  Google Scholar 

  151. Koniesczny I, Liberek K (2002). Cooperative action of Escherichia coli ClpB protein and DnaK chaperone in the activation of a replication initiation protein. JBiol Chem. 277: 18483–8.

    Google Scholar 

  152. Beinker P, Schlee S, Groempin Y, Seidel R, Reinstein J (2002). The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity. J Biol Chem. 277: 47160–6.

    PubMed  CAS  Google Scholar 

  153. Gershon H, Gershon D (1970). Detection of inactive enzyme molecules in ageing organisms. Nature 227: 1214–17.

    PubMed  CAS  Google Scholar 

  154. Lithgow GJ, Walker GA (2002). Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev. 123: 765–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morrow, G., Tanguay, R.M. (2003). Molecular Chaperones and Cellular Aging. In: Kaul, S.C., Wadhwa, R. (eds) Aging of Cells in and Outside the Body. Biology of Aging and its Modulation, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0669-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0669-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6314-4

  • Online ISBN: 978-94-017-0669-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics