Skip to main content

Mitochondria and Aging

  • Chapter
  • 437 Accesses

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

Abstract

Animal cells rely on oxidative phosphorylation to supply the chemical energy necessary for life. In this process electrons are transferred, via a series of membrane-bound enzymes (complexes I–IV) and mobile electron carriers (ubiquinone and cytochrome c) to molecular oxygen resulting in the formation of water [1]. The chemical energy involved in these electron transfers is stored as a transmembrane chemical gradient established by the translocation of protons across the membrane by complexes I,III and IV [2, 3]. This stored energy is then coupled to the formation of ATP by the controlled flow of protons down their chemical gradient within complex V, the ATP synthase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chance B (1965). Reaction of oxygen with the respiratory chain in cells and tissues. J Gen Physiol. 49(Suppl.): 163–95.

    PubMed  CAS  Google Scholar 

  2. Chance B, Mela L (1966). A hydrogen ion concentration gradient in a mitochondrial membrane. Nature 212: 369–72.

    PubMed  CAS  Google Scholar 

  3. Mitchell P, Moyle J (1967). Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213: 137–9.

    PubMed  CAS  Google Scholar 

  4. Boveris A, Cadenas E, Stoppani AO (1976). Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J. 156: 435–44

    PubMed  CAS  Google Scholar 

  5. Carroll M (1989). Organelles. New York: Guilford Press.

    Google Scholar 

  6. Turnbull DM, Lightowlers RN (2001). Might mammalian mitochondria merge? Nature Genet. 7: 895–96.

    CAS  Google Scholar 

  7. Nass MM (1966). The circularity of mitochondrial DNA. Proc Natl Acad Sci USA 56: 1215–22.

    PubMed  CAS  Google Scholar 

  8. Anderson S, Bankier AT, Barre11 BG et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–65.

    Google Scholar 

  9. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nature Genet. 23: 147.

    PubMed  CAS  Google Scholar 

  10. Bogenhagen D, Clayton DA (1974). The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. JBiol Chem. 249: 7991–5.

    CAS  Google Scholar 

  11. Caron F, Jacq C, Rouviere-Yaniv J (1979). Characterization of a histone-like protein extracted from yeast mitochondria. Proc Natl Acad Sci USA 76: 4265–9.

    PubMed  CAS  Google Scholar 

  12. DeFrancesco L, Attardi G (1981). In situ photochemical crosslinking of HeLa cell mitochondrial DNA by a psoralen derivative reveals a protected region near the origin of replication. Nucleic Acids Res. 9: 6017–30.

    PubMed  CAS  Google Scholar 

  13. Howell N (1999). Human mitochondrial diseases: answering questions and questioning answers. Int Rev Cytol. 186: 49–116.

    PubMed  CAS  Google Scholar 

  14. Brown WM, George M, Jr., Wilson AC (1979). Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–71.

    PubMed  CAS  Google Scholar 

  15. Chinnery PF, Howell N, Andrews RA, Turnbull DM (1999). Clinical mitochondrial genetics. J Med Genet. 36: 425–36.

    PubMed  CAS  Google Scholar 

  16. Lightowlers RN, Chinnery PF, Turnbull DM, Howell N (1997). Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet. 13: 450–5.

    PubMed  CAS  Google Scholar 

  17. Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol. 11: 298–300.

    PubMed  CAS  Google Scholar 

  18. Harman D (1972). The biologic clock: the mitochondria? JAm Geriatr Soc. 20: 145–7.

    CAS  Google Scholar 

  19. Miguel J, Economos AC, Fleming J, Johnson JE Jr (1980). Mitochondrial role in cell aging. Exp Gerontol. 15: 575–91.

    Google Scholar 

  20. Chance B, Sies H, Boveris A (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59: 527–605.

    PubMed  CAS  Google Scholar 

  21. Hansford RG, Hogue BA, Mildaziene V (1997). Dependence of H202 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29: 89–95.

    PubMed  CAS  Google Scholar 

  22. Orr WC, Sohal RS (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–30.

    PubMed  CAS  Google Scholar 

  23. Sohal RS, Agarwal A, Agarwal S, Orr WC (1995). Simultaneous overexpression of copper-and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem. 270: 15671–4.

    PubMed  CAS  Google Scholar 

  24. Parkes TL, Elia AJ, Dickinson D, Hilliker Ai, Phillips JP, Boulianne GL (1998). Extension of Drosophila lifespan by overexpression of human SOD 1 in motorneurons. Nature Genet. 19: 171–4.

    PubMed  CAS  Google Scholar 

  25. Sun J, Tower J (1999). FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol. 19: 216–28.

    PubMed  CAS  Google Scholar 

  26. Wong A, Boutis P, Hekimi S (1995). Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–59.

    PubMed  CAS  Google Scholar 

  27. Lakowski B, Hekimi S (1996). Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272: 1010–13.

    PubMed  CAS  Google Scholar 

  28. Jonassen T, Marbois BN, Kim L, et al. (1996). Isolation and sequencing of the rat Cog7 gene and the mapping of mouse Coq7 to chromosome 7. Arch Biochem Biophys. 330: 285–9.

    PubMed  CAS  Google Scholar 

  29. Marbois BN, Clarke CF (1996). The COQ7 gene encodes a protein in Saccharomyces cerevisiae necessary for ubiquinone biosynthesis. JBiol Chem. 271: 2995–3004.

    CAS  Google Scholar 

  30. Frenzel H, Feimann J (1984). Age-dependent structural changes in the myocardium of rats. A quantitative light-and electron-microscopic study on the right and left chamber wall. Mech Ageing Dev. 27: 29–41.

    PubMed  CAS  Google Scholar 

  31. Ledda M, Martinelli C, Pannese E (2001). Quantitative changes in mitochondria of spinal ganglion neurons in aged rabbits. Brain Res Bull. 54: 455–9.

    PubMed  CAS  Google Scholar 

  32. Paradies G, Ruggiero FM (1990). Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim Biophys Acta 1016: 207–12.

    PubMed  CAS  Google Scholar 

  33. Ruggiero FM, Cafagna F, Petruzzella V, Gadaleta MN, Quagliariello E (1992). Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem. 59: 487–91.

    PubMed  CAS  Google Scholar 

  34. Shigenaga MK, Hagen TM, Ames BN (1994). Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91: 10771–8.

    PubMed  CAS  Google Scholar 

  35. Sohal RS, Sohal BH (1991). Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dey. 57: 187–202.

    CAS  Google Scholar 

  36. Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H (1994). Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Del.74: 12133.

    CAS  Google Scholar 

  37. Souza-Pinto NC, Croteau DL, Hudson EK, Hansford RG, Bohr VA (1999). Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. Nucleic Acids Res. 27: 1935–42.

    PubMed  CAS  Google Scholar 

  38. Sohal RS, Arnold L, Orr WC (1990). Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech Ageing Dey. 56: 223–35.

    CAS  Google Scholar 

  39. Semsei I, Rao G, Richardson A (1991). Expression of superoxide dismutase and catalase in rat brain as a function of age. Mech Ageing Dey. 58: 13–19.

    CAS  Google Scholar 

  40. Tian L, Cai Q, Wei H (1998). Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med. 24: 1477–84.

    PubMed  CAS  Google Scholar 

  41. Lu CY, Lee HC, Fahn HJ, Wei YH (1999). Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res. 423: 11–21.

    PubMed  CAS  Google Scholar 

  42. Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL (2000). Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem. 275: 37518–23.

    PubMed  CAS  Google Scholar 

  43. Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL (2002). Conditional targeting of the DNA repair enzyme hOGG 1 into mitochondria. J Biol Chem. 277: 449327.

    PubMed  CAS  Google Scholar 

  44. Masoro E, J. (2000). Caloric restriction and aging: an update. Exp Gerontol. 35: 299

    Google Scholar 

  45. Weindruch R, Keenan KP, Caney JM, et al. (2001). Caloric restriction mimetics: metabolic interventions. J Gerontol Series A: Biol Sci. 56: 20–33.

    Google Scholar 

  46. Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS (1998). Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med. 25: 1089–97.

    PubMed  CAS  Google Scholar 

  47. Kaneko T, Tahara S, Matsuo M (1997). Retarding effect of dietary restriction on the accumulation of 8-hydroxy-2’-deoxyguanosine in organs of Fischer 344 rats during aging. Free Radic Biol Med. 23: 76–81.

    PubMed  CAS  Google Scholar 

  48. Sreekumar R, Unnikrishanan J, Fu A et al. (2002). Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab. 238: E38–43.

    Google Scholar 

  49. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkin G (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33: 40–8.

    PubMed  CAS  Google Scholar 

  50. Dillin A, Hsu A-L, Arantes-Oliveira N, et al. (2002). Rates of behaviour and aging specified by mitochondrial function during developement. Science 298: 2398–401.

    PubMed  CAS  Google Scholar 

  51. Leonard JV, Schapira AH (2000). Mitochondria] respiratory chain disorders I: mitochondrial DNA defects. Lancet 355: 299–304.

    PubMed  CAS  Google Scholar 

  52. Leonard JV, Schapira AVH (2000). Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 355: 389–94.

    PubMed  CAS  Google Scholar 

  53. Trounce I, Byrne E, Marzuki S (1989). Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in aging [see comments]. Lancet 1: 637–9

    PubMed  CAS  Google Scholar 

  54. Yen TC, Chen YS, King KL, Yeh SH, Wei YH (1989). Liver mitochondrial respiratory functions decline with age. Biochem Biophys Res Commun. 165: 944–1003.

    PubMed  CAS  Google Scholar 

  55. Cooper JM, Mann VM, Schapira AH (1992). Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. JNeurol Sci. 113: 91–8.

    CAS  Google Scholar 

  56. Bowling AC, Mutisya EM, Walker LC, Price DL, Cork LC, Beal MF (1993). Age-dependent impairment of mitochondrial function in primate brain. J Neurochem. 60: 1964–7.

    PubMed  CAS  Google Scholar 

  57. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994). Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226: 73–82.

    PubMed  CAS  Google Scholar 

  58. Brierley EJ, Johnson MA, James OF, Turnbull DM (1996). Effects of physical activity and age on mitochondrial function. QJMed. 89: 251–8.

    CAS  Google Scholar 

  59. Chinnery PF, Turnbull DM (1997). Clinical features, investigation, and management of patients with defects of mitochondrial DNA [editorial]. J Neurol Neurosurg Psychiatr. 63: 559–63.

    PubMed  CAS  Google Scholar 

  60. Muller-Hocker J (1989). Cytochrome-c-oxidase deficient cardiomyocytes in the human heart - an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol. 134: 1167–73.

    PubMed  CAS  Google Scholar 

  61. Muller-Hocker J (1990). Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J Neurol Sci. 100: 14–21.

    PubMed  CAS  Google Scholar 

  62. Sciacco M, Bonilla E (1996). Cytochemistry and immunocytochemistry of mitochondria in tissue sections. Methods Enzymol. 264: 509–21.

    PubMed  CAS  Google Scholar 

  63. Old SL, Johnson MA (1989). Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem J. 21: 545–55.

    PubMed  CAS  Google Scholar 

  64. Brierley EJ, Johnson MA, Lightowlers RN, James OF, Turnbull DM (1998). Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol. 43: 217–23.

    PubMed  CAS  Google Scholar 

  65. Muller-Hocker J, Schneiderbanger K, Stefani FH, Kadenbach B (1992). Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing — a cytochemicalimmunohistochemical study. Mutat Res. 275: 115–24.

    PubMed  CAS  Google Scholar 

  66. Cottrell DA, Blakely EL, Johnson MA, Borthwick GM, Ince PI, Turnbull DM (2001). Mitochondrial DNA mutations in disease and ageing. Novartis Found Symp. 235: 23443; discussion 243–6.

    Google Scholar 

  67. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Borthwick GM, Turnbull DM (2001). Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol Aging 22: 265–72.

    PubMed  CAS  Google Scholar 

  68. Barron MJ, Johnson MA, Andrews RM, et al. (2001). Mitochondrial abnormalities in ageing macular photoreceptors. Invest Ophthalmol Vis Sci. 42: 3016–22.

    PubMed  CAS  Google Scholar 

  69. Tanaka M, Gong J-S, Zhang J, Yoneda M, Yagi K (1998). Mitochondrial genotype associated with longevity. Lancet 351: 185–6.

    PubMed  CAS  Google Scholar 

  70. Ross OA, McCormack R, Curran MD, et al. (2001). Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp Gerontol. 36: 1161–78.

    PubMed  CAS  Google Scholar 

  71. Rose G, Passarino G, Carrieri G, et al. (2001). Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur J Hum Genet. 9: 701–7.

    CAS  Google Scholar 

  72. Cortopassi GA, Arnheim N (1990). Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18: 6927–33.

    PubMed  CAS  Google Scholar 

  73. Ikebe S, Tanaka M, Ohno K, et al. (1990). Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun. 170: 1044–8.

    PubMed  CAS  Google Scholar 

  74. Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang CF, Marzuki S (1990). Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem Int. 22: 1067–76.

    PubMed  CAS  Google Scholar 

  75. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992). Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet. 2: 324–29.

    PubMed  CAS  Google Scholar 

  76. Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992). Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res. 275: 169–80.

    PubMed  CAS  Google Scholar 

  77. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992). A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89: 7370–4.

    PubMed  CAS  Google Scholar 

  78. Simonetti S, Chen X, DiMauro S, Schon EA (1992). Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180: 113–22.

    PubMed  CAS  Google Scholar 

  79. DiDonato S, Zeviani M, Giovannini P, et al. (1993). Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology 43: 2262–8.

    PubMed  CAS  Google Scholar 

  80. Kitagawa T, Suganuma N, Nawa A, et al. (1993). Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol Reprod. 49: 7306.

    Google Scholar 

  81. Lee HC, Pang CY, Hsu HS, Wei YH (1994). Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226: 37–43.

    PubMed  CAS  Google Scholar 

  82. Lezza AM, Boffoli D, Scacco S, Cantatore P, Gadaleta MN (1994). Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles. Biochem Biophys Res Commun. 205: 772–9.

    PubMed  CAS  Google Scholar 

  83. Pang CY, Lee HC, Yang JH, Wei YH (1994). Human skin mitochondrial DNA deletions associated with light exposure. Arch Biochem Biophys. 312: 534–8.

    PubMed  CAS  Google Scholar 

  84. Yang JH, Lee HC, Lin KJ, Wei YH (1994). A specific 4977-bp deletion of mitochondrial DNA in human ageing skin. Arch Dermatol Res. 286: 386–90.

    PubMed  CAS  Google Scholar 

  85. Kao S, Chao HT, Wei YH (1995). Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 52: 729–36.

    PubMed  CAS  Google Scholar 

  86. Barreau E, Brossas JY, Courtois Y, Treton JA (1996). Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci. 37: 384–91.

    PubMed  CAS  Google Scholar 

  87. Fayet G, Jansson M, Sternberg D, et al. (2002). Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromusc Disord. 12: 484–93.

    PubMed  Google Scholar 

  88. Melov S, Shoffner JM, Kaufman A, Wallace DC (1995). Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle [published erratum appears in Nucleic Acids Res. (1995) 23: 4938]. Nucleic Acids Res. 23: 4122–6.

    PubMed  CAS  Google Scholar 

  89. Nekhaeva E, Bodyak ND, Kraytsberg Y, et al. (2002). Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues. Proc Nall Acad Sci USA 99: 5521–6.

    CAS  Google Scholar 

  90. Lin MT, Simon DK, Ahn CH, Kim LM, Beal MF (2002). High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Hum Mol Genet. 11: 133–45.

    PubMed  CAS  Google Scholar 

  91. Munscher C, Rieger T, Muller-Hocker J, Kadenbach B (1993). The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages. FEBS Lett. 317: 27–30.

    PubMed  CAS  Google Scholar 

  92. Zhang C, Linnane AW, Nagley P (1993). Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun. 195: 1104–10.

    PubMed  CAS  Google Scholar 

  93. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999). Aging- dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286: 774–9.

    PubMed  CAS  Google Scholar 

  94. Murdock DG, Christacos NC, Wallace DC (2000). The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res. 28: 4350–5.

    PubMed  CAS  Google Scholar 

  95. Muller-Hocker J, Seibel P, Schneiderbanger K, Kadenbach B (1993). Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibres in the elderly. Virchows Arch A Pathol Anat Histopathol. 422: 7–15.

    PubMed  CAS  Google Scholar 

  96. Khrapko K, Bodyak N, Thilly WG, et al. (1999). Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res. 27: 2434–41.

    PubMed  CAS  Google Scholar 

  97. Yoneda M, Chomyn A, Martinuzzi A, Hurko O, Attardi G (1992). Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy. Proc Natl Acad Sci USA 89: 11164–8.

    PubMed  CAS  Google Scholar 

  98. Attardi G, Yoneda M, Chomyn A (1995). Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems. Biochim Biophys Acta 1271: 241–8.

    PubMed  Google Scholar 

  99. Hofhaus G, Gattermann N (1999). Mitochondria harbouring mutant mtDNA — a cuckoo in the nest? Biol Chem. 380: 871–7.

    PubMed  CAS  Google Scholar 

  100. Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (2002). Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 30: 4626–33.

    PubMed  CAS  Google Scholar 

  101. Takeda K, Takahashi S, Onishi A, Hanada H, Imai H (2000). Replicative advantage and tissue-specific segregation of RR mitochondrial DNA between C57BL/6 and RR heteroplasmic mice. Genetics 155: 777–83.

    PubMed  CAS  Google Scholar 

  102. Chinnery PF, Samuels DC (1999). Relaxed replication of mtDNA: a model with implications for the expression of disease. Am J Hum Genet. 64: 1158–65.

    PubMed  CAS  Google Scholar 

  103. Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001). Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet. 68: 802–6.

    PubMed  CAS  Google Scholar 

  104. Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, Thilly WG (2001). High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet. 28: 147–50.

    PubMed  CAS  Google Scholar 

  105. Khrapko K, Coller HA, Andre PC, Li XC, Hanekamp JS, Thilly WG (1997). Mitochondrial mutational spectra in human cells and tissues. Proc Natl Acad Sci USA 94: 13798–803.

    PubMed  CAS  Google Scholar 

  106. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC (1997). A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nature Genet. 16: 226–34.

    PubMed  CAS  Google Scholar 

  107. Li Y, Huang TT, Carlson EJ, et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11: 376–81.

    PubMed  CAS  Google Scholar 

  108. Melov S, Coskun P, Patel M, et al. (1999). Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96: 846–51.

    PubMed  CAS  Google Scholar 

  109. Williams MD, Van Remmen H, Conrad CC, Huang TT, Epstein CJ, Richardson A (1998). Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem. 273: 28510–15.

    PubMed  CAS  Google Scholar 

  110. Kokoszka JE, Coskun P, Esposito LA, Wallace DC (2001). Increased mitochondrial oxidative stress in the Sod2 (+ /−) mouse results in the age-related decline of mitochondria) function culminating in increased apoptosis. Proc Natl Acad Sci USA 98: 2278–83.

    PubMed  CAS  Google Scholar 

  111. Susin SA, Zamzami N, Kroemer G (1998). Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366: 151–65.

    PubMed  CAS  Google Scholar 

  112. Zoratti M, Szabo I (1995). The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–76.

    PubMed  Google Scholar 

  113. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G (1996). Mitochondria and programmed cell death: back to the future. FEBS Lett. 396: 7–13.

    PubMed  CAS  Google Scholar 

  114. Green DR, Reed JC (1998). Mitochondria and apoptosis. Science 281: 1309–12.

    PubMed  CAS  Google Scholar 

  115. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–57.

    PubMed  CAS  Google Scholar 

  116. Davies KJ (1999). The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48: 41–7.

    PubMed  CAS  Google Scholar 

  117. Cai J, Jones DP (1999). Mitochondrial redox signaling during apoptosis. J Bioenerg Biomembr. 31: 327–34.

    PubMed  CAS  Google Scholar 

  118. Lemasters JJ, Qian T, Bradham CA, et al. (1999). Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr. 31: 305–19.

    PubMed  CAS  Google Scholar 

  119. Pedersen PL (1999). Mitochondrial events in the life and death of animal cells: a brief overview. J Bioenerg Biomembr. 31: 291–304.

    PubMed  CAS  Google Scholar 

  120. Lightowlers RN, Jacobs HT, Kajander OA (1999). Mitochondrial DNA — all things bad? Trends Genet. 15: 91–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barron, M., Turnbull, D. (2003). Mitochondria and Aging. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics