Skip to main content

Genomic Instability in Human Premature Aging

  • Chapter
Aging at the Molecular Level

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

  • 441 Accesses

Abstract

A number of premature aging disorders have been described in humans. In patients with these disorders, aging-like symptoms and age-associated diseases appear much earlier than in the average normal individual; thus, the premature aging disorders are useful models for the study of the aging process (Figure 1). Werner syndrome (WS) is the most characterized premature aging disorder. Patients with WS have a large number of signs and symptoms of normal aging at a younger age than normal individuals. However, not all symptoms of WS resemble the normal aging process, and WS is best described as a segmental progeroid disorder. The premature aging disorders include the DNA repair defective disease, xeroderma pigmentosum (XP), which includes seven complementation groups (separate genetic disorders). In this condition, the deficiency of the DNA repair pathway, nucleotide excision, leads to a severely increased incidence of cancer. In Cockayne syndrome, there is also a DNA repair defect, and in addition to the features of premature aging, these individuals have severe neurological deficits. Rothmund-Thomson disease, Hutchinson-Guilford and progeria are other examples of this category of disorders. All of these diseases are very rare conditions in the general population. In several cases, the disorders are associated with a mutation in a single gene, which has by now been identified, cloned and characterized. This means that molecular biochemical experimentation can be done. Complementation assays with transfected mutant cell lines or purified proteins added to extracts from mutant cell lines can be used to study the basis of molecular genetic defects (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohr VA, Cooper M, Orren D, et al (2000). Werner syndrome protein: biochemical properties and functional interactions. Exp Gerontol. 35: 695–702.

    Article  PubMed  CAS  Google Scholar 

  2. Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998). The premature ageing syndrome protein, WRN, is a 3’->5’ exonuclease.Nat Genet. 20: 114–16.

    Article  PubMed  CAS  Google Scholar 

  3. Opresko PL, Laine JP, Brosh RM, Seidman MM, Bohr VA (2001). Coordinate action of the helicase and 3’ to 5 ’ exonuclease of Werner syndrome protein.J Biol Chem. 276: 44677–87

    Article  PubMed  CAS  Google Scholar 

  4. Poot M, Hoehn H, Runger TM, Martin GM (1992). Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cells. Exp Cell Res. 202: 267–73.

    Article  PubMed  CAS  Google Scholar 

  5. Bohr VA, Souza PN, Nyaga SG, et al (2001). DNA repair and mutagenesis in Werner syndrome. Environ Mol Mutagen. 38: 227–34.

    Article  PubMed  CAS  Google Scholar 

  6. Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001). Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J. 15: 1224–6.

    PubMed  CAS  Google Scholar 

  7. Oshima J (2000). The Werner syndrome protein: an update. Bioessays 22: 894–901.

    Article  PubMed  CAS  Google Scholar 

  8. Pichierri P, Franchitto A, Mosesso P, Proietti dS, Balajee AS, Palitti F (2000). Werner’ s syndrome lymphoblastoid cells are hypersensitive to topoisomerase II inhibitors in the G2 phase of the cell cycle. Mutat Res. 459: 123–33.

    Article  PubMed  CAS  Google Scholar 

  9. Saintigny Y, Makienko K, Swanson C, Emond MC, Monnat RJ (2002). Homologous recombination resolution defect in Werner syndrome. Mol Cell Biol. 22: 6971–8.

    Article  PubMed  CAS  Google Scholar 

  10. Webb DK, Evans MK, Bohr VA (1996). DNA repair fine structure in Werner’ s syndrome cell lines. Exp Cell Res. 224: 272–8.

    Article  PubMed  CAS  Google Scholar 

  11. Balajee AS, Machwe A, May A, et al (1999). The Werner syndrome protein is involved in RNA polymerase II transcription. Mol Biol Cell. 10: 2655–68.

    PubMed  CAS  Google Scholar 

  12. Brosh RM, Orren DK, Nehlin JO, et al (1999). Functional and physical interaction between WRN helicase and human replication protein A. JBiol Chem, 274: 18341–50.

    Article  CAS  Google Scholar 

  13. Spillare EA, Robles AI, Wang XW, et al. (1999). p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev. 13: 1355–60.

    Article  PubMed  CAS  Google Scholar 

  14. Brosh RM, Karmakar P, Sommers JA, et al. (2001). p53 Modulates the exonuclease activity of Werner syndrome protein. JBiol Chem. 276: 35093–102.

    Article  CAS  Google Scholar 

  15. Lebel M, Spillare EA, Harris CC, and Leder P (1999). The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. JBiol Chem. 274: 37795–9.

    Article  CAS  Google Scholar 

  16. Kamath-Loeb AS, Johansson E, Burgers PM, Loeb LA (2000). Functional interaction between the Werner Syndrome protein and DNA polymerase delta. Proc Natl Acad Sci USA 97: 4603–8.

    Article  PubMed  CAS  Google Scholar 

  17. Brosh RM, von Kobbe C, Sommers JA, et al (2001). Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J. 20: 5791801

    Google Scholar 

  18. Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA (2000). Ku complex interacts with and stimulates the Werner protein. Genes Dev. 14: 907–12.

    PubMed  CAS  Google Scholar 

  19. Karmakar P, Piotrowski J, Brosh RM, et al (2002). Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem. 277: 18291–302.

    Article  PubMed  CAS  Google Scholar 

  20. Featherstone C, Jackson SP (1999). DNA-dependent protein kinase gets a break: its role in repairing DNA and maintaining genomic integrity. Br J Cancer 80 (Suppl. 1): 14–19.

    PubMed  CAS  Google Scholar 

  21. Brosh RM, Majumdar A, Desai S, Hickson ID, Bohr VA, Seidman MM (2001). Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J Biol Chem. 276: 3024–30.

    Article  PubMed  CAS  Google Scholar 

  22. Constantinou A, Tarsounas M, Karow JK,et al (2000). The Werner’ s syndrome protein (WRN) translocates Holliday junctions in vitro and co-localises with RPA upon replication arrest. EMBO Rep. 1, 80–84.

    Article  PubMed  CAS  Google Scholar 

  23. Mohaghegh P, Karow JK, Brosh RM, Bohr VA, Hickson ID (2001). The Bloom’ s and Werner’ s syndrome proteins are DNA structure-specific helicases. Nucl Acids Res. 29: 2843–9.

    Article  PubMed  CAS  Google Scholar 

  24. von Kobbe C, Karmakar P, Dawut L, et al (2002). Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J Biol Chem. 277: 22035–44.

    Article  Google Scholar 

  25. Schulz VP, Zakian VA, Ogburn CE, et al (1996). Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum Genet. 97: 750–4.

    Article  PubMed  CAS  Google Scholar 

  26. Kruk PA, Rampino NJ, Bohr VA (1995). DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci USA 92: 258–62.

    Article  PubMed  CAS  Google Scholar 

  27. Wyllie FS, Jones CJ, Skinner JW, et al (2000). Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet. 24: 16–17.

    Article  PubMed  CAS  Google Scholar 

  28. Hisama FM, Chen YH, Meyn MS, Oshima J, Weissman SM (2000). WRN or telomerase constructs reverse 4-nitroquinoline 1-oxide sensitivity in transformed Werner syndrome fibroblasts. Cancer Res. 60: 2372–6.

    PubMed  CAS  Google Scholar 

  29. Hsu HL, Gilley D, Blackburn EH, Chen DJ (1999). Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 96: 12454–8.

    Article  PubMed  CAS  Google Scholar 

  30. Bailey SM, Meyne J, Chen DJ,et al (1999). DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci USA 96: 14899904.

    Google Scholar 

  31. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002). Telomerebinding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem. 277: 41110–9.

    Article  PubMed  CAS  Google Scholar 

  32. Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L (2001). The Saccharomyces cerevisiae WRN homolog Sgslp participates in telomere maintenance in cells lacking telomerase. EMBO J. 20: 905–13.

    Article  PubMed  CAS  Google Scholar 

  33. Martin GM (1997). The pathobiology of the Werner syndrome. FASEBJ. 11: A1449.

    Google Scholar 

  34. Friedberg EC (1996). Cockayne syndrome–a primary defect in DNA repair, transcription, both or neither? Bioessays 18: 731–8.

    Article  PubMed  CAS  Google Scholar 

  35. Balajee AS and Bohr VA (2000). Genomic heterogeneity of nucleotide excision repair. Gene 250: 15–30.

    Article  PubMed  CAS  Google Scholar 

  36. Brosh RM, Balajee AS, Selzer RR, Sunesen M, De Santis LP, Bohr VA (1999). The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Mol Biol Cell 10: 3583–94.

    PubMed  CAS  Google Scholar 

  37. Orren DK, Dianov GL, and Bohr VA (1996). The human CSB (ERCC6) gene corrects the transcription-coupled repair defect in the CHO cell mutant ÚV61. Nucl Acids Res. 24: 3317–22.

    Article  PubMed  CAS  Google Scholar 

  38. Tantin D (1998). RNa polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex conating the transcription factor IIH components xeroderma pigmentosum B and p62. J Biol Chem. 273: 27794–9.

    Article  PubMed  CAS  Google Scholar 

  39. Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC (1996). Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35: 2157–67.

    Article  PubMed  CAS  Google Scholar 

  40. Henning K, Li L, Legerski R, et al (1995). The Cockayne syndrome complementation group A gene encodes a WD-repeat protein which interacts with CSB protein and a subunit of the RNA pol II transcription factor IIH. Cell 82: 555–66.

    Article  PubMed  CAS  Google Scholar 

  41. Pazini MJ, Kadonaga JT (1997). SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88: 737–40.

    Article  Google Scholar 

  42. Balajee AS, May A, Dianov GL, Friedberg EC, and Bohr VA (1997). Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Proc Natl Acad Sci USA 94: 4306–11.

    Article  PubMed  CAS  Google Scholar 

  43. Selby CP, Drapkin R, Reinberg D, Sancar A (1997). RNA polymerase II stalled at a thymine dimer: footprint and effect of excision repair. Nucl Acid Res. 25: 787–93.

    Article  CAS  Google Scholar 

  44. Le Page F, Klungland A, Barnes DE, Sarasin A, Boiteux S (2000). Transcription coupled repair of 8-oxoguanine in murine cells: the oggi protein is required for repair in nontranscribed sequences but not in transcribed sequences. Proc Natl Acad Sci USA 97: 8397–402.

    Article  PubMed  Google Scholar 

  45. Dianov G, Bischoff C, Sunesen M, Bohr VA (1999). Repair of 8-oxoguanine in DNA is deficient inCockayne syndrome group B cells. Nucl Acids Res. 27: 1365–8.

    Article  PubMed  CAS  Google Scholar 

  46. Tuo J, Muftuoglu M, Chen C, et al (2001). The Cockayne Syndrome group B gene product is involved in general genome base excision repair of 8-hydroxyguanine in DNA. J Biol Chem. 276: 45772–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bohr, V.A., Opresko, P.L. (2003). Genomic Instability in Human Premature Aging. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics