Skip to main content

Oxidative Damage to Proteins

  • Chapter
Aging at the Molecular Level

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

Abstract

Protein oxidation in vivo is a natural consequence of aerobic life. Oxygen radicals and other reactive oxygen species that are generated as by-products of cellular metabolism or from environmental sources, cause modifications to amino acids of proteins. These generally result in loss of protein function and/or enzymatic activity. Living in an oxygenated environment has required the evolution of effective cellular strategies to detect and detoxify metabolites of molecular oxygen known as reactive oxygen species (ROS). The appropriate and inappropriate production of oxidants, together with the ability of organisms to respond to oxidative stress, is intricately connected to aging and life span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pacifici RE, Kono Y, Davies, KJ (1993). Hydrophobicity as the signal for selective degradation of hydroxyl radical modified hemoglobin by the multicatalytic proteinase complex, proteasome. JBiol Chem. 268: 15405–11.

    CAS  Google Scholar 

  2. Stadtman ER (1993). Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 62: 797–821.

    Article  PubMed  CAS  Google Scholar 

  3. Garrison WM (1987). Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev. 87: 381–98.

    Article  CAS  Google Scholar 

  4. Garrison WM, Jayko ME, Bennet, W (1962). Radiation-induced oxidation of proteins in aqueous solution. Radiat Res. 16: 487–502.

    Article  Google Scholar 

  5. Swallow AJ (1960). Effect of ionizing radiation on proteins, RCO groups, peptide bond cleavage, inactivation, -SH oxidation In: AJ Swallow, ed. Radiation Chemistry of Organic Compounds. New York: Pergamon Press, pp. 211–24.

    Google Scholar 

  6. Schuessler H, Schilling K (1984). Oxygen effect in radiolysis of proteins. Part 2. Bovine serum albumin. Int JRadiat Biol. 45: 267–81.

    Article  CAS  Google Scholar 

  7. Huggins TG, Wells-Knecht MC, Detorie NA, Baynes JW, Thorpe SR (1993). Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem. 268: 12341–7.

    PubMed  CAS  Google Scholar 

  8. Neuzil J, Gebiki JM, Stocker, R (1993). Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 293: 601–6.

    PubMed  CAS  Google Scholar 

  9. Davies MJ, Fu S, Dean RT (1999). Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med. 27: 1151–63.

    Article  PubMed  CAS  Google Scholar 

  10. Stadtman ER, Berlett BS (1997). Reactive oxygen-mediated protein oxidation in aging and diseases. Chem Res Toxicol. 10: 485–94.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas JA, Mallis RJ (2001). Aging and oxidation of reactive protein sulfhydryls. Exp Gerontol. 36: 1519–26.

    Article  PubMed  CAS  Google Scholar 

  12. Stadtman ER, Berlett BS (1998). Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev. 30: 225–43.

    Article  PubMed  CAS  Google Scholar 

  13. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996). Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93: 15036–40.

    Article  PubMed  CAS  Google Scholar 

  14. Bazin M, Patterson LK, Santus R (1983). Direct observation of monophotonic photo-ionization in tryptophan excited by 300-nm radiation. A laser photolysis study. J Phys Chem. 87: 189–90.

    Article  CAS  Google Scholar 

  15. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW (1997). Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 272: 3520–6.

    Article  PubMed  CAS  Google Scholar 

  16. Beckman JS (1996). Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 9: 836–44.

    Article  PubMed  CAS  Google Scholar 

  17. Martin BL, Wu D, Jakes S, Graves DJ (1990). Chemical influences on the specifity of tyrosine phosphorylation. J Biol Chem. 265: 7108–111.

    PubMed  CAS  Google Scholar 

  18. Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS (1997). Superoxide dismutase catalyzes nitration of tyrosine by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem. 69: 1945–53.

    Article  PubMed  CAS  Google Scholar 

  19. Eiserich JP, Estevez AG, Bamberg TV, et al. (1999). Microtubule dysfunction by post-translational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 96: 6365–70.

    Article  PubMed  CAS  Google Scholar 

  20. Amici A, Levine RL, Tsai L, Stadtman ER (1989). Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed reactions. J Biol Chem. 264: 3341–6.

    PubMed  CAS  Google Scholar 

  21. Refsgaard H, Tsai L, Stadtman ER (2000). Modifications of proteins by polyunsatured fatty acid peroxidation products. Proc Natl Acad Sci USA, 97: 611–16.

    Article  PubMed  CAS  Google Scholar 

  22. Esterbauer H, Schaur RJ, Zollner H (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 11: 81–128.

    Article  PubMed  CAS  Google Scholar 

  23. Burcham PC, Kuhan YT (1996). Introduction of carbonyl groups into proteins of the lipid peroxidation product, malondialdehyde. Biochem Biophys Res Commun. 220: 996–1001.

    Article  PubMed  CAS  Google Scholar 

  24. Butterfield DA, Stadtman ER (1997). Protein oxidation processes in aging brain. Adv Cell Aging Gerontol. 2: 161–91.

    Article  CAS  Google Scholar 

  25. Kristal BS, Yu BP (1992). An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol. 47: B107–14.

    Article  PubMed  CAS  Google Scholar 

  26. Baynes JW (1991). Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–12.

    Article  PubMed  CAS  Google Scholar 

  27. Monnier V, Gerhardinger C, Marion MS, Taneda S (1995). In: Cutler RG, Packer L, Bertram J, Mori A, eds. Oxidative Stress and Aging. Basel, Switzerland: Birkhauser Verlag, pp. 141–9.

    Chapter  Google Scholar 

  28. Levine RL, Williams JA, Stadtman ER, Shacter E (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233: 346–57.

    Article  PubMed  CAS  Google Scholar 

  29. Stadtman ER (1997). Free radical mediated oxidation of proteins. In: Özben T, ed. Free Radics, Oxidative Stress, and Antioxidants. Pathological and Physiological Significance. NATO ASI Series, Series A: Life Sciences, 296. New York: Plenum Press, pp. 51–65.

    Google Scholar 

  30. Davies KJ (2000). Oxidative stress, Antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50: 279–89.

    Article  PubMed  CAS  Google Scholar 

  31. Sitte N, Merker K, Grune T (1998). Proteasome-dependent degradation of oxidized proteins in MRC-5 fibroblasts. FEBS Lett. 440: 399–402.

    Article  PubMed  CAS  Google Scholar 

  32. Grune T, Reinheckel T, Davies KJ (1997). Degradation of oxidized proteins in mammalian cells. FASEB J. 11: 526–34.

    PubMed  CAS  Google Scholar 

  33. Rothstein M (1984). Changes in enzymatic proteins during aging. In: Roy AK, Chatterjee, eds. Molecular Basis of Aging. New York: Academic Press, pp. 209–32.

    Google Scholar 

  34. Stadtman ER, Levine RL (2000). Protein oxidation. Ann NY Acad Sci. 899: 191–208.

    Article  PubMed  CAS  Google Scholar 

  35. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER (1987). Age-related changes in oxidized proteins. J Biol Chem. 262: 5488–91.

    PubMed  CAS  Google Scholar 

  36. Agarwal S, Sohal RS (1994). Aging and proteolysis of oxidized proteins. Arch Biochem Biophys. 309: 24–8.

    Article  PubMed  CAS  Google Scholar 

  37. Agarwal S, Sohal RS (1994). Ageing and protein oxidative damage. Mech Ageing Dey. 75: 11–19.

    Article  CAS  Google Scholar 

  38. Agarwal S, Sohal RS (1996). Relationship between susceptibility to protein oxidation, aging, and maximum life span potential of different species. Exp Gerontol. 31: 365–72.

    Article  PubMed  CAS  Google Scholar 

  39. Sitte N, Merker K, von Zglinicki T, Grune T (2000). Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med. 28, 701–8.

    Article  PubMed  CAS  Google Scholar 

  40. Sitte N, Merker K, von Zglinicki T, Grune T, Davies KJA (2000). Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I–effects of proliferative senescence. FASEB J. 14 (15): 2495–502.

    Article  PubMed  CAS  Google Scholar 

  41. Sitte N, Merker K, von Zglinicki T, Davies KJA, Grune T (2000). Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part II–aging of nondividing cells. FASEB J. 14 (15): 2503–10.

    Article  PubMed  CAS  Google Scholar 

  42. Sohal RS, Agarwal S, Dubey A, Orr WC (1993). Protein oxidation damage is associated with life expectancy of houseflies. Proc Natl Acad Sci USA 90: 7255–9.

    Article  PubMed  CAS  Google Scholar 

  43. Smith CD, Carney JM, Starke-Reed PE, et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540–3.

    Article  PubMed  CAS  Google Scholar 

  44. Stadtman ER (1992). Protein oxidation and aging. Science 257: 1220–4.

    Article  PubMed  CAS  Google Scholar 

  45. Dubey A, Forster MJ, Sohal RS (1995). Effect of spin-trapping compound N-tert-butyl-aphenylnitrone on protein oxidation and life span. Arch Biochem Biophys. 324: 249–54.

    Article  PubMed  CAS  Google Scholar 

  46. Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994). Effect of age and caloric restriction of DNA oxidative damage in different tissues of C57BL/ 6 mice. Mech Ageing Dev. 76: 215–24.

    Article  PubMed  CAS  Google Scholar 

  47. Masoro EJ (2000). Caloric restriction and aging: an update. Exp Gerontol. 35: 299–305.

    Article  PubMed  CAS  Google Scholar 

  48. Orr WC, Sohal RS (1994). Extension of life span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–30.

    CAS  Google Scholar 

  49. Giulivi C, Davies KJ (1994). Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol. 233: 363–71.

    Article  PubMed  CAS  Google Scholar 

  50. Chao CC, Ma YS, Stadtman ER (1997). Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci USA, 94: 2969–74.

    Article  PubMed  CAS  Google Scholar 

  51. Nakano M, Oenzil F, Mizuno T, Gotoh S (1995). Age-related changes in the lipofuscin accumulation of brain and heart. Gerontology 41 (2): 69–79.

    Article  PubMed  CAS  Google Scholar 

  52. Agarwal S, Sohal RS (1993). Relationship between aging and susceptibility to protein oxidative damage. Biochem Biophys Res Commun. 194: 1203–6.

    Article  PubMed  CAS  Google Scholar 

  53. Grune T, Shringarpure R, Sitte N, Davies KJA (2001). Age-related changes in protein oxidation and proteolysis in mammalian cells. J Gerontol A Biol Sci Med Sci. 56: B459–67.

    Article  PubMed  CAS  Google Scholar 

  54. Sitte N, Huber M, Grune T, et al. KJA (2000). Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J. 14(11): 1490–8.

    Google Scholar 

  55. Yin D (1996). Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med. 21: 871–88.

    Article  PubMed  CAS  Google Scholar 

  56. Brunk UT, Terman A (1998). The mitochondrial-lysosomal axis theory of cellular aging. In: Cadenas E, Packer L, eds. Understanding the Process of Aging. Basel: Marcel Dekker, pp. 229–50.

    Google Scholar 

  57. Stadtman ER (2001). Protein oxidation in aging and age-related diseases. Ann NY Acad Sci. 928: 22–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sitte, N. (2003). Oxidative Damage to Proteins. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics