Skip to main content

The Proteasome in Aging

  • Chapter
Book cover Aging at the Molecular Level

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

Abstract

The proteasome is a major intracellular proteolytic system found in Archaebacteria and Eukaryotes, and degrades the majority of intracellular proteins including oxidized and ubiquitinated proteins [1, 2]. There is a large body of experimental evidence indicating that proteasome function is compromised during aging, a feature that may have important implications in the cellular aging process [3–6]. Indeed, aging is characterized by a progressive and irreversible decline of the different physiological functions of the organism during the last part of its life. Increased modification of macromolecules is a common mark of aging [7, 8] and proteins have been reported to be crucial targets for numerous post-translational damages (e.g., oxidation, glycation, glycoxidation, conjugation with lipid peroxidation products) which have been shown to directly impair their biological functions [9–11]. Interestingly, calorie restriction, the only intervention that slows down aging, modulates the age-related accumulation of altered proteins [12, 13]. The age-related build up of oxidatively modified protein raises the problem of the efficacy of the proteolytic systems in charge of eliminating these damaged proteins, in particular the efficacy of the proteasomal system. Following a detailed description of the proteasomal system, the impact of aging on proteasome structure and function is discussed in the light of studies aimed at characterizing the fate of proteasome during oxidative stress. The possible implication of age-related alterations on the proteasomal system in immune senescence and neurodegeneration is then presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coux O, Tanaka K, Goldberg AL (1996). Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 65: 801–47.

    PubMed  CAS  Google Scholar 

  2. Davies KJ (2001). Degradation of oxidized proteins by the 20S proteasome. Biochimie 83: 301–10.

    PubMed  CAS  Google Scholar 

  3. Carrard G, Bulteau AL, Petropoulos I, Friguet B (2002). Impairment of proteasome structure and function in aging. Int JBiochem Cell Biol. 34: 1461–74.

    CAS  Google Scholar 

  4. Dunlop RA, Rodgers KJ, Dean RT (2002). Recent developments in the intracellular degradation of oxidized proteins. Free Radic Biol Med. 33: 894–906.

    PubMed  CAS  Google Scholar 

  5. Shringarpure R, Davies KJ (2002). Protein turnover by the proteasome in aging and disease. Free Radic Biol Med. 32: 1084–9.

    PubMed  CAS  Google Scholar 

  6. Szweda PA, Friguet B, Szweda LI (2002). Proteolysis, free radicals, and aging. Free Radic Biol Med. 33: 29–36.

    PubMed  CAS  Google Scholar 

  7. Beckman KB, Ames BN (1998). The free radical theory of aging matures. Physiol Rev. 78: 547–81.

    PubMed  CAS  Google Scholar 

  8. Stadtman ER (1992). Protein oxidation and aging. Science 257: 1220–4.

    PubMed  CAS  Google Scholar 

  9. Berlett BS, Stadtman ER (1997). Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 272: 20313–16.

    PubMed  CAS  Google Scholar 

  10. Davies KJ (1993). Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans. 21: 346–53.

    PubMed  CAS  Google Scholar 

  11. Stadtman ER (1990). Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med. 9: 315–25.

    PubMed  CAS  Google Scholar 

  12. Goto S, Takahashi R, Araki S, Nakamoto H (2002). Dietary restriction initiated in late adulthood can reverse age-related alterations of protein and protein metabolism. Ann NY Acad Sci. 959: 50–6.

    PubMed  CAS  Google Scholar 

  13. Shibatani T, Nazir M, Ward WF (1996). Alterations of rat liver 20 S proteasome activities by age and food restriction. J Gerontol Biol Sci. 51: 316–322.

    Google Scholar 

  14. Harris JR (1968). Release of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 150: 534–7.

    PubMed  CAS  Google Scholar 

  15. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999). The proteasome. Annu Rev Biophys Biomol Struct. 28: 295–317.

    PubMed  CAS  Google Scholar 

  16. Lupas A, Zwickl P, Baumeister W (1994). Proteasome sequences in eubacteria. Trends Biochem Sci. 19: 533–4.

    PubMed  CAS  Google Scholar 

  17. Tamura T, Nagy I, Lupas A, et al. (1995). The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol. 5: 766–74.

    PubMed  CAS  Google Scholar 

  18. Tanaka K, Ii K, Ichihara A, Waxman L, Goldberg AL (1986). A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J Biol Chem. 261: 15197–203.

    PubMed  CAS  Google Scholar 

  19. Ciechanover A, Orian A, Schwartz AL (2000). The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem. 34 (Suppl.): 40–51.

    CAS  Google Scholar 

  20. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999). Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr. 129: 227S - 37S.

    PubMed  CAS  Google Scholar 

  21. Chang YC, Lee YS, Tejima T, et al. (1998). mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ. 9: 79–84.

    PubMed  CAS  Google Scholar 

  22. Drexler HG (1998). Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 12: 845–59.

    PubMed  CAS  Google Scholar 

  23. King RW, Deshaies RJ, Peters JM, Kirschner MW (1996). How proteolysis drives the cell cycle. Science 274: 1652–9.

    PubMed  CAS  Google Scholar 

  24. Helin K (1998). Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev. 8: 28–35.

    PubMed  CAS  Google Scholar 

  25. Gillette TG, Huang W, Russell SJ, Reed SH, Johnston SA, Friedberg EC (2001). The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes Dey. 15: 1528–39.

    CAS  Google Scholar 

  26. Pajonk F, McBride WH (2001). The proteasome in cancer biology and treatment. Radiat Res. 156: 447–59.

    PubMed  CAS  Google Scholar 

  27. Kruger E, Kloetzel PM, Enenkel C (2001). 20S proteasome biogenesis. Biochimie 83: 289–93.

    Google Scholar 

  28. Voges D, Zwickl P, Baumeister W (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 68: 1015–68.

    PubMed  CAS  Google Scholar 

  29. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: 533–9.

    PubMed  CAS  Google Scholar 

  30. Coux O, Nothwang HG, Silva Pereira I, Recillas Targa F, Bey F, Scherrer K (1994). Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Mol Gen Genet. 245: 769–80.

    PubMed  CAS  Google Scholar 

  31. Groll M, Ditzel L, Lowe J, et al. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution [see comments]. Nature 386: 463–71.

    PubMed  CAS  Google Scholar 

  32. Arendt CS, Hochstrasser M (1999). Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J. 18: 3575–85.

    PubMed  CAS  Google Scholar 

  33. Ramos PC, Hockendorff J, Johnson ES, Varshaysky A, Dohmen RJ (1998). Umplp is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92: 489–99.

    PubMed  CAS  Google Scholar 

  34. Chen P, Hochstrasser M (1996). Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86: 961–72.

    PubMed  CAS  Google Scholar 

  35. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997). The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem. 272: 25200–9.

    PubMed  CAS  Google Scholar 

  36. Schmidtke G, Kraft R, Kostka S, et al. (1996). Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J. 15: 6887–98.

    PubMed  CAS  Google Scholar 

  37. Seemuller E, Lupas A, Baumeister W (1996). Autocatalytic processing of the 20S proteasome. Nature 382: 468–71.

    PubMed  CAS  Google Scholar 

  38. Gerards WL, de Jong WW, Bloemendal H, Boelens W (1998). The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits. JMo1 Biol. 275: 113–21.

    CAS  Google Scholar 

  39. Schliephacke M, Kremp A, Schmid HP, Kohler K, Kull U (1991). Prosomes (proteasomes) of higher plants. Eur J Cell Biol. 55: 114–21.

    PubMed  CAS  Google Scholar 

  40. Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ (1999). Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc Natl Acad Sci USA 96: 6223–8.

    PubMed  CAS  Google Scholar 

  41. Bose S, Mason GG, Rivett AJ (1999). Phosphorylation of proteasomes in mammalian cells. Mol Biol Rep. 26: 11–4.

    PubMed  CAS  Google Scholar 

  42. Umeda M, Manabe Y, Uchimiya H (1997). Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.). FEBS Lett. 403: 313–7.

    PubMed  CAS  Google Scholar 

  43. Friguet B, Bulteau AL, Conconi M, Petropoulos I (2002). Redox control of 20S proteasome. Methods Enzymol. 353: 253–62.

    PubMed  CAS  Google Scholar 

  44. Bose S, Brooks P, Mason GG, Rivett AJ (2001). γ-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation. Biochem J. 353: 291–7.

    Google Scholar 

  45. Demasi M, Shringarpure R, Davies KJ (2001). Glutathiolation of the proteasome is enhanced by proteolytic inhibitors. Arch Biochem Biophys. 389: 254–63.

    PubMed  CAS  Google Scholar 

  46. Brannigan JA, Dodson G, Duggleby HJ, et al. (1995). A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378: 416–9.

    PubMed  CAS  Google Scholar 

  47. Seemuller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995). Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268: 579–82.

    PubMed  CAS  Google Scholar 

  48. Brannigan JA, Dodson GG (1997). A short cut for the immune system. Nat Struct Biol. 4: 334–8.

    PubMed  CAS  Google Scholar 

  49. Kisselev AF, Akopian TN, Castillo V, Goldberg AL (1999). Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell. 4: 395–402.

    PubMed  CAS  Google Scholar 

  50. Orlowski M, Cardozo C, Michaud C (1993). Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32: 1563–72.

    PubMed  CAS  Google Scholar 

  51. Akopian TN, Kisselev AF, Goldberg AL (1997). Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem. 272: 1791–8.

    CAS  Google Scholar 

  52. Tomkinson B (1999). Tripeptidyl peptidases: enzymes that count. Trends Biochem Sci. 24: 355–9.

    PubMed  CAS  Google Scholar 

  53. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999). Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96: 10403–8.

    PubMed  CAS  Google Scholar 

  54. Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL (1996). Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem. 271: 7273–6.

    PubMed  CAS  Google Scholar 

  55. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995). Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726–31.

    PubMed  CAS  Google Scholar 

  56. Kroll M, Arenzana-Seisdedos F, Bachelerie F, Thomas D, Friguet B, Conconi M (1999). The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chem Biol. 6: 689–98.

    PubMed  CAS  Google Scholar 

  57. Rock KL, Gramm C, Rothstein L, et al. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–71.

    PubMed  CAS  Google Scholar 

  58. Mellgren RL (1997). Specificities of cell permeant peptidyl inhibitors for the proteinase activities of mu-calpain and the 20 S proteasome. J Biol Chem. 272: 29899–903.

    PubMed  CAS  Google Scholar 

  59. Adams J, Behnke M, Chen S, et al. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett. 8: 333–8.

    PubMed  CAS  Google Scholar 

  60. Bogyo M, McMaster JS, Gaczynska M, Tortorella D, Goldberg AL, Ploegh H (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog Hs1V by a new class of inhibitors. Proc Natl Acad Sci USA 94: 6629–34.

    PubMed  CAS  Google Scholar 

  61. Kisselev AF, Goldberg AL (2001). Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 8: 739–58.

    PubMed  CAS  Google Scholar 

  62. Ma CP, Slaughter CA, DeMartino GN (1992). Identification, purification, and char-acterization of a protein activator (PA28) of the 20 S proteasome (macropain). J Biol Chem. 267: 10515–23.

    Google Scholar 

  63. Watanabe N, Yamada S (1996). Activation of 20S proteasomes from spinach leaves by fatty acids. Plant Cell Physiol. 37: 147–51.

    PubMed  CAS  Google Scholar 

  64. Groll M, Bajorek M, Kohler A et al. (2000). A gated channel into the proteasome core particle. Nat Struct Biol. 7: 1062–7.

    PubMed  CAS  Google Scholar 

  65. Kohler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D (2001). The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell. 7: 1143–52.

    PubMed  CAS  Google Scholar 

  66. Braun BC, Glickman M, Kraft R et al. (1999). The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol. 1: 221–6.

    PubMed  CAS  Google Scholar 

  67. Kloetzel PM (2001). Antigen processing by the proteasome. Nat Rev Mol Cell Biol. 2: 179–87.

    PubMed  CAS  Google Scholar 

  68. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994). A 26 S protease subunit that binds ubiquitin conjugates. JBiol Chem. 269: 7059–61.

    CAS  Google Scholar 

  69. van Nocker S, Sadis S, Rubin DM, et al. (1996). The multiubiquitin-chain-binding protein Meb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol. 16: 6020–8.

    PubMed  Google Scholar 

  70. Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992). Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem. 267: 22369–77.

    PubMed  CAS  Google Scholar 

  71. Mott JD, Pramanik BC, Moomaw CR, Afendis SJ, DeMartino GN, Slaughter CA (1994). PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. J Biol Chem. 269: 31466–71.

    PubMed  CAS  Google Scholar 

  72. Knowlton JR, Johnston SC, Whitby FG et al. (1997). Structure of the proteasome activator REGalpha (PA28alpha). Nature 390: 639–43.

    PubMed  CAS  Google Scholar 

  73. Realini C, Rogers SW, Rechsteiner M (1994). KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett. 348: 109–13.

    PubMed  CAS  Google Scholar 

  74. Realini C, Jensen CC, Zhang Z, et al. (1997). Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators. J Biol Chem. 272: 25483–92.

    PubMed  CAS  Google Scholar 

  75. Stohwasser R, Salzmann U, Giesebrecht J, Kloetzel PM, Holzhutter HG (2000). Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur J Biochem. 267: 6221–30.

    PubMed  CAS  Google Scholar 

  76. Whitby FG, Masters EI, Kramer L et al. (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408: 115–20.

    Google Scholar 

  77. Li J, Gao X, Ortega J, et al. (2001). Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta. EMBO J. 20: 3359–69.

    PubMed  CAS  Google Scholar 

  78. Rivett AJ, Bose S, Brooks P, Broadfoot KI (2001). Regulation of proteasome complexes by gamma-interferon and phosphorylation. Biochimie 83: 363–6.

    PubMed  CAS  Google Scholar 

  79. Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K (2000). Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. JBiol Chem. 275: 14336–45.

    CAS  Google Scholar 

  80. Preckel T, Fung-Leung WP, Cai Z, et al. (1999). Impaired immunoproteasome assembly and immune responses in PA28-’- mice. Science 286: 2162–5.

    PubMed  CAS  Google Scholar 

  81. Rechsteiner M, Realini C, Ustrell V (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem J. 345 (Pt 1): 1–15.

    PubMed  CAS  Google Scholar 

  82. Rock KL, Goldberg AL (1999). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol. 17: 739–79.

    PubMed  CAS  Google Scholar 

  83. Belich MP, Trowsdale J (1995). Proteasome and class I antigen processing and presentation. Mol Biol Rep. 21: 53–6.

    PubMed  CAS  Google Scholar 

  84. Hisamatsu H, Shimbara N, Saito Y, et al. (1996). Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma. J Exp Med. 183: 1807–16.

    PubMed  CAS  Google Scholar 

  85. Groettrup M, Khan S, Schwarz K, Schmidtke G. (2001). Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 83: 367–72.

    PubMed  CAS  Google Scholar 

  86. Gileadi U, Moins-Teisserenc HT, Correa I, et al. (1999). Generation of an immunodominant CTL epitope is affected by proteasome subunit composition and stability of the antigenic protein. J Immunol. 163: 6045–52.

    PubMed  CAS  Google Scholar 

  87. Sijts AJ, Ruppert T, Rehermann B, Schmidt M, Koszinowski U, Kloetzel PM (2000). Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J Exp Med. 191: 503–14.

    PubMed  CAS  Google Scholar 

  88. Gaczynska M, Rock KL, Goldberg AL (1993). Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365: 264–7.

    PubMed  CAS  Google Scholar 

  89. Grune T, Reinheckel T, Davies KJ (1997). Degradation of oxidized proteins in mammalian cells. FASEB J. 11: 526–34.

    PubMed  CAS  Google Scholar 

  90. Shang F, Nowell TR Jr, Taylor A (2001). Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res. 73: 229–38.

    PubMed  CAS  Google Scholar 

  91. Friguet B, Bulteau AL, Chondrogianni N, Conconi M, Petropoulos I (2000). Protein degradation by the proteasome and its implications in aging. Ann NY Acad Sci. 908: 143–54.

    PubMed  CAS  Google Scholar 

  92. Gaczynska M, Osmulski PA, Ward WF (2001). Caretaker or undertaker? The role of the proteasome in aging. Mech Ageing Del. 122: 235–54.

    CAS  Google Scholar 

  93. Goto S, Takahashi R, Kumiyama AA, et al. (2001). Implications of protein degradation in aging. Ann NY Acad Sci. 928: 54–64.

    PubMed  CAS  Google Scholar 

  94. Grune T (2000). Oxidative stress, aging and the proteasomal system. Biogerontology 1: 31–40.

    PubMed  CAS  Google Scholar 

  95. Keller JN, Gee J, Ding Q (2002). The proteasome in brain aging. Ageing Res Rev. 1: 279–93.

    PubMed  CAS  Google Scholar 

  96. Conconi M, Szweda LI, Levine RL, Stadtman ER, Friguet B (1996). Age-related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys: 331: 232–40.

    PubMed  CAS  Google Scholar 

  97. Anselmi B, Conconi M, Veyrat-Durebex C, et al. (1998). Dietary self-selection can compensate an age-related decrease of rat liver 20 S proteasome activity observed with standard diet. J Gerontol A Biol Sci Med Sci. 53: B173–9.

    PubMed  CAS  Google Scholar 

  98. Hayashi T, Goto S (1998). Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dey. 102: 55–66.

    CAS  Google Scholar 

  99. Bulteau A, Petropoulos I, Friguet B (2000). Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol. 35: 767–77.

    PubMed  CAS  Google Scholar 

  100. Carrard G, Dieu M, Toussaint O, Raes M, Friguet B (2003). Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol. 35: 728–39.

    PubMed  CAS  Google Scholar 

  101. Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES (2000). Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol. 35: 721–8.

    PubMed  CAS  Google Scholar 

  102. Keller JN, Hanni KB, Markesbery WR (2000). Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev. 113: 61–70.

    PubMed  CAS  Google Scholar 

  103. Merker K, Sitte N, Grune T (2000). Hydrogen peroxide-mediated protein oxidation in young and old human MRC-5 fibroblasts. Arch Biochem Biophys. 375: 50–4.

    PubMed  CAS  Google Scholar 

  104. Ponnappan U, Zhong M, Trebilcock GU (1999). Decreased proteasome-mediated degradation in T cells from the elderly: a role in immune senescence. Cell Immunol. 192: 167–74.

    PubMed  CAS  Google Scholar 

  105. Bulteau AL, Szweda LI, Friguet B (2002). Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys. 397: 298–304.

    PubMed  CAS  Google Scholar 

  106. Petropoulos I, Conconi M, Wang X, et al. (2000). Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci. 55: B220–7.

    PubMed  CAS  Google Scholar 

  107. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–3.

    PubMed  CAS  Google Scholar 

  108. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000). Mitotic misregulation and human aging. Science 287: 2486–92.

    PubMed  CAS  Google Scholar 

  109. Bardag-Gorce F, Farout L, Veyrat-Durebex C, Briand Y, Briand M (1999). Changes in 20S proteasome activity during ageing of the LOU rat. Mol Biol Rep. 26: 89–93.

    PubMed  CAS  Google Scholar 

  110. Conconi M, Petropoulos I, Emod I, Turlin E, Biville F, Friguet B (1998). Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem J. 333: 407–15.

    PubMed  CAS  Google Scholar 

  111. Conconi M, Friguet B (1997). Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep. 24: 45–50.

    PubMed  CAS  Google Scholar 

  112. Glockzin S, von Knethen A, Scheffner M, Brune B (1999). Activation of the cell death program by nitric oxide involves inhibition of the proteasome. JBiol Chem. 274: 19581–6.

    CAS  Google Scholar 

  113. Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998). Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J. 335: 637–42.

    PubMed  CAS  Google Scholar 

  114. Arrigo AP (2001). Hsp27: novel regulator of intracellular redox state. IUBMB Life 52: 303–7.

    PubMed  CAS  Google Scholar 

  115. Verbeke P, Clark BF, Rattan SI (2001). Reduced levels of oxidized and glycoxidized proteins in human fibroblasts exposed to repeated mild heat shock during serial passaging in vitro. Free Radic Biol Med. 31: 1593–602.

    CAS  Google Scholar 

  116. Gomes-Marcondes MC, Tisdale MJ (2002). Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett. 180: 69–74.

    PubMed  CAS  Google Scholar 

  117. Sitte N, Merker K, Von Zglinicki T, Grune T, Davies KJ (2000). Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I —effects of proliferative senescence. FASEB J. 14: 2495–502.

    PubMed  CAS  Google Scholar 

  118. Keller JN, Huang FF, Zhu H, Yu J, Ho YS, Kindy TS (2000). Oxidative stress-associated impairment of proteasome activity during ischemia-reperfusion injury. J Cereb Blood Flow Metab. 20: 1467–73.

    PubMed  CAS  Google Scholar 

  119. Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K (1999). 4Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. JBiol Chem. 274: 23787–93.

    Google Scholar 

  120. Bulteau AL, Lundberg KC, Humphries KM, et al. (2001). Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. JBiol Chem. 25: 25.

    Google Scholar 

  121. Friguet B, Stadtman ER, Szweda LI (1994). Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J Biol Chem. 269: 21639–43.

    PubMed  CAS  Google Scholar 

  122. Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett. 405: 21–5.

    PubMed  CAS  Google Scholar 

  123. Bulteau AL, Moreau M, Nizard C, Friguet B (2002). Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic Biol Med. 32: 1157–70.

    PubMed  CAS  Google Scholar 

  124. Sitte N, Huber M, Grune T, et al. (2000). Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J. 14: 1490–8.

    PubMed  CAS  Google Scholar 

  125. Ginaldi L, Loreto MF, Corsi MP, Modesti M, De Martinis M (2001) Immunosenescence and infectious diseases. Microbes Infect. 3: 851–7.

    PubMed  CAS  Google Scholar 

  126. Webster RG (2000). Immunity to influenza in the elderly. Vaccine 18: 1686–9.

    PubMed  CAS  Google Scholar 

  127. Gravekamp C (2001). Tailoring cancer vaccines to the elderly: the importance of suitable mouse models. Mech Ageing Del. 122: 1087–105.

    CAS  Google Scholar 

  128. Weksler ME, Szabo P (2000). The effect of age on the B-cell repertoire. J Clin Immunol: 20 240–9.

    PubMed  CAS  Google Scholar 

  129. Kline GH, Hayden TA, Klinman NR (1999). B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. Jlmmunol. 162: 3342–9.

    CAS  Google Scholar 

  130. Stacy S, Krolick KA, Infante AJ, Kraig E (2002). Immunological memory and late onset autoimmunity. Mech Ageing Dey. 123: 975–85.

    CAS  Google Scholar 

  131. Ben-Yehuda A, Danenberg HD, Zakay-Rones Z, Gross DJ, Friedman G (1998). The influence of sequential annual vaccination and of DHEA administration on the efficacy of the immune response to influenza vaccine in the elderly. Mech Ageing Dey. 102: 299–306.

    CAS  Google Scholar 

  132. Dunn PL, North RJ (1991). Effect of advanced ageing on the ability of mice to cause tumour regression in response to immunotherapy. Immunology 74: 355–9.

    PubMed  CAS  Google Scholar 

  133. Miller RA (2000). Effect of aging on T lymphocyte activation. Vaccine 18: 1654–60.

    PubMed  CAS  Google Scholar 

  134. Pimentel-Muinos FX, Mazana J, Fresno M (1994). Regulation of interleukin-2 receptor alpha chain expression and nuclear factor.kappa B activation by protein kinase C in T lymphocytes. Autocrine role of tumor necrosis factor alpha. JBiol Chem. 269: 24424–9.

    CAS  Google Scholar 

  135. Ponnappan U (1998). Regulation of transcription factor NFkappa B in immune senescence. Front Biosci. 3: D152–68.

    PubMed  CAS  Google Scholar 

  136. Ponnappan U (2002). Ubiquitin-proteasome pathway is compromised in CD45RO(+) and CD45RA(+) T lymphocyte subsets during aging. Exp Gerontol. 37: 359–67.

    PubMed  CAS  Google Scholar 

  137. Mason GG, Murray RZ, Pappin D, Rivett AJ (1998). Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett 430: 269–74.

    PubMed  CAS  Google Scholar 

  138. Ding Q, Keller JN (2001). Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med. 31: 574–84.

    PubMed  CAS  Google Scholar 

  139. Keller JN, Huang FF, Markesbery WR (2000). Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98: 149–56.

    PubMed  CAS  Google Scholar 

  140. Keller JN, Hanni KB, Markesbery WR (2000). Impaired proteasome function in Alzheimer’s disease. J Neurochem: 75: 436–9.

    PubMed  CAS  Google Scholar 

  141. McNaught KS, Jenner P (2001). Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett. 297: 191–4.

    PubMed  CAS  Google Scholar 

  142. McNaught KS, Belizaire R, Jenner P, Olanow,CW, Isacson 0 (2002). Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett. 326: 155–8.

    CAS  Google Scholar 

  143. McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002). Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13: 1437–41.

    PubMed  CAS  Google Scholar 

  144. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001). Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci. 2: 589–94.

    PubMed  CAS  Google Scholar 

  145. Bence NF, Sampat RM, Kopito RR (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552–5.

    PubMed  CAS  Google Scholar 

  146. Ding Q, Lewis JJ, Strum KM, et al. (2002). Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem. 277: 13935–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carrard, G., Friguet, B. (2003). The Proteasome in Aging. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics