Skip to main content

Transcriptional and Translational Dysregulation During Aging

  • Chapter
Aging at the Molecular Level

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

Abstract

Each cell type in an organism comes to acquire a unique pattern of gene expression through differentiation during development. It is obvious that this pattern of gene expression must be maintained for the normal functioning of cells and for the survival of the organism. Since aging is considered to be a result of failure of maintenance at all levels, attempts have been made to look for an age-related drifting-away of cells in terms of changes in the pattern of gene expression during aging. In most cases, mRNA levels of different genes have been estimated by RNA-DNA hybridization, using cDNA or genomic probes for specific genes. More recently, the availability of gene array technology has made it possible to compare the expression of thousands of genes. The results obtained show that during aging the expression of some genes increases, of some it decreases and of others it remains constant [1–7]. In all such studies on measuring the levels of mRNA in young and old cells and tissues, it is assumed that this estimate is a direct measure of gene activity. This is a simplistic notion, because it is well known that post-transcriptional changes, such as the processing, transport and turnover of RNA, change significantly the levels of mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goyns MH, Charlton MA, Dunford JE, et al. (1998) Differential display analysis of gene expression indicates that age-related changes are restricted to a small cohort of genes. Mech Ageing Dev,. 101: 73–90.

    CAS  Google Scholar 

  2. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999). Microarray analysis of replicative senescence. Curr Biol. 9: 939–45.

    Article  PubMed  CAS  Google Scholar 

  3. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–3.

    Article  PubMed  CAS  Google Scholar 

  4. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000). Mitotic misregulation and human aging. Science 287: 2486–92.

    Article  PubMed  CAS  Google Scholar 

  5. Jiang CH, Tsien JZ, Schultz PG, Hu Y (2001). The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA 98: 1930–4.

    Article  PubMed  CAS  Google Scholar 

  6. Miller RA, Galecki A, Shmookler-Reis RJ (2001). Interpretation, design, and analysis of gene array expression experiments. J Gerontol Biol Sci. 56A: B52–7.

    Article  CAS  Google Scholar 

  7. Welle S (2002). Gene transcript profiling in aging research. Exp Gerontol. 37: 583–90.

    Article  PubMed  CAS  Google Scholar 

  8. Kator K, Cristofalo V, Charpentier R, Cutler RG (1985). Dysdifferentiative nature of aging: passage number dependency of globin gene expression in normal human diploid cells grown in tissue culture. Gerontology 31: 355–61.

    Article  PubMed  CAS  Google Scholar 

  9. Sato AI, Schneider EL, Danner DB (1990). Aberrant gene expression and aging: examination of tissue-specific mRNAs in young and old rats. Mech Ageing Dey. 54: 1–12.

    Article  CAS  Google Scholar 

  10. Ono T, Shinya K, Uehara Y, Okada S (1989). Endogenous virus genomes become hypo-methylated tissue-specifically during aging process of C57BL mice. Mech Ageing Dey. 50: 27–36.

    Article  CAS  Google Scholar 

  11. Richardson A, Rutherford MS, Birchenall-Sparks MC, Roberts MS, Wu WT, Cheung HT (1985). Levels of specific messenger RNA species as a function of age. In: Sohal RS, Birnbaum LS, Cutler RG, eds. Molecular Biology of Aging: Gene Stability and Gene Expression. New York: Raven Press, pp. 228–41.

    Google Scholar 

  12. Müller WEG, Agutter PS, Schröder, HC (1995). Transport of mRNA into the cytoplasm. In: Macieira-Coelho A, ed. Molecular Basis of Aging. Boca Raton: CRC Press, pp. 353–88.

    Google Scholar 

  13. Medvedev ZA (1986). Age-related changes of transcription and RNA processing. In: Platt D, ed. Drugs and Aging. Berlin: Springer-Verlag, pp. 1–19.

    Chapter  Google Scholar 

  14. Be Miller PM, Baker UA, Schmit JC (1985). Cellular aging and ribosomal RNA. In: Sohal RS, Birnbaum LS, Cutler RG, eds. Molecular Biology of Aging: Gene Stability and Gene Expression. New York: Raven Press, pp. 223–8.

    Google Scholar 

  15. Strehler BL, Hirsch G, Gusseck D, Johnson R, Bick M (1971). Codon restriction theory of ageing and development. J Theor Biol. 33: 429–74.

    Article  PubMed  CAS  Google Scholar 

  16. Rattan SIS (1995). Translation and post-translational modifications during aging. In: Macieira-Coelho A, ed. Molecular Basis of Aging. Boca Raton: CRC Press, pp. 389–420.

    Google Scholar 

  17. Van Remmen H, Ward WF, Sabia RV, Richardson A (1995). Gene expression and protein degradation. In: Masoro E, ed. Handbook of Physiology: Aging. Oxford: Oxford University Press, pp. 171–234.

    Google Scholar 

  18. Schröder HC, Ugarkovic D, Müller WEG, Mizushima H, Nemoto F, Kuchino Y (1992). Increased expression of UAG suppressor tRNA in aged mice: consequences for retroviral gene expression. Eur J Gerontol. 1: 452–7.

    Google Scholar 

  19. Takahashi R, Goto S (1988). Fidelity of aminoacylation by rat-liver tyrosyl-tRNA synthetase. Effect of age. Eur J Biochem. 178: 381–6.

    Article  PubMed  CAS  Google Scholar 

  20. Gabius H-J, Graupner G, Cramer F (1983). Activity patterns of aminoacyl-tRNA synthetases, tRNA methylases, arginyltransferase and tubulin:tyrosine ligase during development and ageing of Caenorhabditis elegans. Eur J Biochem. 131: 231–4.

    Article  CAS  Google Scholar 

  21. Takahashi R, Mori N, Goto S (1985). Alteration of aminoacyl tRNA synthetases with age: accumulation of heat-labile moleculaes in rat liver, kidney and brain. Mech Ageing Dev. 33: 67–75.

    Article  PubMed  CAS  Google Scholar 

  22. Bernd A, Batke E, Zahn RK, Müller WEG (1982). Age-dependent gene induction in quail oviduct. XV. Alterations of the poly(A) associated protein pattern and of the poly(A) chain length of mRNA. Mech Ageing Dey. 19: 361–77.

    Article  CAS  Google Scholar 

  23. Langstrom NS, Anderson JP, Lindroos HG, Winblad B, Wallace WC (1989). Alzheimer’s disease-associated reduction of polysomal mRNA translation. Mol Brain Res. 5: 259–69.

    Article  PubMed  CAS  Google Scholar 

  24. Kristal BS, Conrad CC, Richardson A, Yu BP (1993). Is poly(A) tail length altered by aging or dietary restriction? Gerontology 39: 152–62.

    Article  PubMed  CAS  Google Scholar 

  25. Brewer G (2002). Messenger RNA decay during aging and development. Ageing Res. Rev. 1: 607–25.

    CAS  Google Scholar 

  26. Antequera F, Bird A (1993). Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90: 11995–9.

    Article  PubMed  CAS  Google Scholar 

  27. Goodstadt L, Ponting CP (2001). Sequence variation and disease in the wake of the draft human genome. Hum Mol Genet. 10: 2209–14.

    Article  PubMed  CAS  Google Scholar 

  28. Rattan SIS (1995). Ageing–a biological perspective. Mol Aspects Med. 16: 439–508.

    Article  PubMed  CAS  Google Scholar 

  29. Rattan SIS (1996). Synthesis, modifications and turnover of proteins during aging. Exp Gerontol. 31: 33–47.

    Article  PubMed  CAS  Google Scholar 

  30. Ramsey JJ, Harper ME, Weindruch R (2000). Restriction of energy intake, energy expenditure, and aging. Free Rad Biol Med. 29: 946–68.

    Article  PubMed  CAS  Google Scholar 

  31. Kirkwood TBL, Holliday R, Rosenberger RF (1984). Stability of the cellular translation process. Int Rev Cytol. 92: 93–132.

    Article  PubMed  CAS  Google Scholar 

  32. Holliday R (1995). Understanding Ageing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  33. Wojtyk RI, Goldstein S (1980). Fidelity of protein synthesis does not decline during aging of cultured human fibroblasts. J Cell Physiol. 103: 299–303.

    Article  PubMed  CAS  Google Scholar 

  34. Luce MC, Bunn CL (1987). Altered sensitivity of protein synthesis to paromomycin in extracts from aging human diploid fibroblasts. Exp Gerontol. 22: 165–77.

    Article  PubMed  CAS  Google Scholar 

  35. Luce MC, Bunn CL (1989). Decreased accuracy of protein synthesis in extracts from aging human diploid fibroblasts. Exp Gerontol. 24: 113–25.

    Article  PubMed  CAS  Google Scholar 

  36. Holliday R, Rattan SIS (1984). Evidence that paromomycin induces premature ageing in human fibroblasts. Monogr Dev Biol. 17: 221–33.

    PubMed  CAS  Google Scholar 

  37. Buchanan JH, Stevens A, Sidhu J (1987) Aminoglycoside antibiotic treatment of human fibroblasts: intracellular accumulation, molecular changes and the loss of ribosomal accuracy. Eur J Cell Biol. 43: 141–7.

    PubMed  CAS  Google Scholar 

  38. Silar P, Picard M (1994). Increased longevity of EEF-la high-fidelity mutants in Podospora anserina. J Mol Biol. 235: 231–6.

    Article  CAS  Google Scholar 

  39. Silar P, Rossignol M, Haedens V, Derhy Z, Mazabraud A (2000). Deletion and dosage modulation of the eEF1A gene in Podospora anserina: effect on the life cycle. Biogerontology 1: 47–54.

    Article  PubMed  CAS  Google Scholar 

  40. Holbrook MA, Menninger JR (2002). Erythromycin slows aging of Saccharomyces cerevisiae. J Gerontol Biol Sci. 57A: B29–36.

    Article  Google Scholar 

  41. Orgel LE (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49: 517–21.

    Article  PubMed  CAS  Google Scholar 

  42. Orgel LE (1973). The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc Natl Acad Sci USA 67: 1476.

    Article  Google Scholar 

  43. Medvedev ZA (1990). An attempt at a rational classification of theories of ageing. Biol Rev. 65: 375–98.

    Article  PubMed  CAS  Google Scholar 

  44. Kowald A, Kirkwood TBL (1993). Accuracy of tRNA charging and codon:anticodon recognition; relative importance for cellular stability. J Theor Biol. 160: 493–508.

    Article  PubMed  CAS  Google Scholar 

  45. Silar P (1994). Is translational accuracy an out-dated topic? Trends Genet. 10: 73–4.

    Article  Google Scholar 

  46. Holliday R (1996). The current status of the protein error theory of aging. Exp Gerontol. 31: 449–52.

    Article  PubMed  CAS  Google Scholar 

  47. Nyström T (2002). Translational fidelity, protein oxidation, and senescence: lessons from bacteria. Ageing Res Rev. 1: 693–703.

    Article  PubMed  Google Scholar 

  48. Merrick WC (1992). Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 56: 291–315.

    PubMed  CAS  Google Scholar 

  49. Hershey JWB, Merrick WC (2000). The pathway and mechanism of inititation of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB, eds. Translational Control of Gene Expression. New York: Cold Spring Harbor Laboratory Press, pp. 33–88.

    Google Scholar 

  50. Schneider RJ (2000). Translational control during heat shock. In: Sonenberg N, Hershey JWB, Mathews MB, eds. Translational Control of Gene Expression. New York: Cold Spring Harbor Laboratory Press, pp. 581–93.

    Google Scholar 

  51. Vargas R, Castaneda M (1983). Age dependent decrease in the activity of protein synthesis initiation factors in rat brain. Mech Ageing Dev. 21: 183–91.

    Article  PubMed  CAS  Google Scholar 

  52. Vargas R, Castaneda M (1984). Heterogeneity of protein synthesis initiation factors in developing and aging rat brain. Mech Ageing Dev. 26: 371–8.

    Article  PubMed  CAS  Google Scholar 

  53. Webster GC (1986). Effect of aging on the components of the protein synthesis system. In: Collatz KG, Sohal RS, eds. Insect Aging. Berlin: Springer-Verlag, pp. 207–16.

    Chapter  Google Scholar 

  54. Webster GC, Webster SL, Landis WA (1981). The effect of age on the initiation of protein synthesis in Drosophila melanogaster. Mech Ageing Dev. 16: 71–9.

    Article  PubMed  CAS  Google Scholar 

  55. Chen ZP, Chen KY (1997). Dramatic attenuation of hypusine formation on eukaryotic initiation factor 5A during senescence of IMR-90 human diploid fibroblasts. J Cell Physiol. 170: 248–54.

    Article  PubMed  CAS  Google Scholar 

  56. Nokazawa T, Mori N, Goto S (1984). Functional deterioration of mouse liver ribosomes during aging: translational activity and the activity for formation of the 47S initiation complex. Mech Ageing Dev. 26: 241–51.

    Article  Google Scholar 

  57. Ward W, Richardson A (1991)/ Effect of age on liver protein synthesis and degradation. Hepatology 14: 935–48.

    Google Scholar 

  58. Adam G, Simm A, Braun F (1987). Levels of ribosomal RNA required for stimulation from quiescence increase during cellular aging in vitro of mammalian fibroblasts. Exp Cell Res. 169: 345–56.

    Article  PubMed  CAS  Google Scholar 

  59. Kirkland JL, Hollenberg CH, Gillon WS (1993). Effects of aging on ribosomal protein L7 messenger RNA levels in cultured rat preadipocytes. Exp Gerontol. 28: 557–63.

    Article  PubMed  CAS  Google Scholar 

  60. Vargas R, Castaneda M (1981). Role of elongation factor 1 in the translational control of rodent protein synthesis. J Neurochem. 37: 687–94.

    Article  PubMed  CAS  Google Scholar 

  61. Webster GC, Webster SL (1983). Decline in synthesis of elongation factor one (EF-1) precedes the decreased synthesis of total protein in aging Drosophila melanogaster. Mech Ageing Dev. 22: 121–8.

    Article  PubMed  CAS  Google Scholar 

  62. Webster GC, Webster SL (1984). Specific disappearance of translatable messenger RNA for elongation factor one in aging Drosophila melanogaster. Mech Ageing Dev. 24: 335–42.

    Article  PubMed  CAS  Google Scholar 

  63. Richardson A, Semsei I (1987). Effect of aging on translation and transcription. Rev Biol Res Aging 3: 467–83.

    CAS  Google Scholar 

  64. Merry BJ, Holehan AM (1991). Effect of age and restricted feeding on polypeptide chain assembly kinetics in liver protein synthesis in vivo. Mech Ageing Dev. 58: 139–50.

    Article  CAS  Google Scholar 

  65. Riffs B, Rattan SIS, Clark BFC, Merrick WC (1990). Eukaryotic protein elongation factors. TIBS. 15: 420–4.

    Google Scholar 

  66. Knudsen SM, Frydenberg J, Clark BFC, Leffers H (1993). Tissue-dependent variation in the expression of elongation factor-lalpha isoforms: isolation and characterization of a cDNA encoding a novel variant of human elongation factor 1alpha. Eur J Biochem. 215: 549–54.

    Article  PubMed  CAS  Google Scholar 

  67. Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E (1994). Microtubule severing by elongation factor 1 a. Science 266: 282–5.

    Article  PubMed  CAS  Google Scholar 

  68. Gonen H, Smith CE, Siegel NR, et al. (1994) Protein synthesis elongation factor EF-la is essential for ubiquitin-dependent degradation of certain Na-acetylated proteins and may be substituted for by the bacterial elongation factor Tu. Proc Natl Acad Sci USA 91: 7648–52.

    Article  PubMed  CAS  Google Scholar 

  69. Rattan SIS (1995). Protein synthesis and regulation in eukaryotes. In: Bittar EE, Bittar N, eds. Principles of Medical Biology, Volume 4, Cell Chemistry and Physiology. Greenwich: JAI Press, pp. 247–63.

    Google Scholar 

  70. Cavallius J, Rattan SIS, Clark BFC (1986). Changes in activity and amount of active elongation factor-la in aging and immortal human fibroblast cultures. Exp Gerontol. 21: 149–57.

    Article  PubMed  CAS  Google Scholar 

  71. Rattan SIS, Cavallius J, Hartvigsen G, Clark BFC (1986). Amounts of active elongation factor-la and its activity in livers of mice during ageing. Trends Ageing Res. 147: 135–40.

    CAS  Google Scholar 

  72. Rattan SIS, Ward WF, Glenting M, Svendsen L, Riis B, Clark BFC (1991). Dietary calorie restriction does not affect the levels of protein elongation factors in rat livers during ageing. Mech Ageing Dey. 58: 85–91.

    Article  CAS  Google Scholar 

  73. Shepherd JCW, Walldorf U, Hug P, Gehring WJ (1989). Fruitflies with additional expression of the elongation factor EF-la live longer. Proc Natl Acad Sci USA 86: 7520–1.

    Article  PubMed  CAS  Google Scholar 

  74. Shikama N, Ackermann R, Brack C (1994). Protein synthesis elongation factor EF-la expression and longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 91: 4199–203.

    Article  PubMed  CAS  Google Scholar 

  75. Dudas SP, Arking R (1994). The expression of the EF1a genes of Drosophila is not associated with the extended longevity phenotype in a selected long-lived strain. Exp Gerontol. 29: 645–57.

    Article  PubMed  CAS  Google Scholar 

  76. Webster GC (1985). Protein synthesis in aging organisms. In: Sohal RS, Birnbaum LS, Cutler RG, eds. Molecular Biology of Aging: Gene Stability and Gene Expression. New York: Raven Press, pp. 263–89.

    Google Scholar 

  77. Takahashi R, Mori N, Goto S (1985). Accumulation of heat-labile elongation factor 2 in the liver of mice and rats. Exp Gerontol. 20: 325–31.

    Article  PubMed  CAS  Google Scholar 

  78. Riis B, Rattan SIS, Derventzi A, Clark BFC (1990). Reduced levels of ADP-ribosylatable elongation factor-2 in aged and SV40-transformed human cells. FEBS Lett. 266: 45–7.

    Article  PubMed  CAS  Google Scholar 

  79. Parrado J, Bougria M, Ayala A, Castaíïo A, Machado A (1999). Effects of aging on the various steps of protein synthesis: fragmentation of elongation factor 2. Free Rad Biol Med. 26: 362–70.

    Article  PubMed  CAS  Google Scholar 

  80. Jäger M, Holtz J, Redpath NT, et al. (2002) The ageing heart: influence of cellular and tissue ageing on total content and distribution of the variants of elongation factor-2. Mech Ageing Dev. 123: 1305–19.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rattan, S.I.S. (2003). Transcriptional and Translational Dysregulation During Aging. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics