Skip to main content

Free Radical Production and Antioxidant Defense: A Primer

  • Chapter
Aging at the Molecular Level

Part of the book series: Biology of Aging and Its Modulation ((BIMO,volume 1))

Abstract

Aging is the progressive accumulation of changes over time that increases the probability of disease and death. There is good reason to believe that molecular damage, and the limited ability of cells, tissues, organs, and individuals to repair it or to maintain function despite it, is the principal driving force of the aging process. A major cause for molecular damage, although by far not the only one (see Chapters 11, 12 and 13, this volume), are highly reactive oxygen-derived free radicals, mostly, but not exclusively endogenously generated, as was first proposed in 1956 by Denham Harman in his “free radical theory of aging” [1]. Denham Harman was also the first to suggest in 1972 a prime role for mitochondria as the biological clock in aging, noting that the rate of oxygen consumption should determine the rate of accumulation of mitochondrial damage produced by free radical reactions [2]. These early suggestions have become a strong and vivid conceptual framework for aging research till today. Thus, a recapitulation of the essentials of the oxygen free radical/antioxidant defense network in animal cells seems to be a prudent opening for a book dealing with the molecular mechanisms of aging. Figure 1 summarizes schematically the interplay between oxygen free radical generation, its damaging effects, and cellular antioxidant responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol. 2: 298–300.

    Article  Google Scholar 

  2. Harman D (1972). The biological clock: the mitochondria? JAm Geriatr Soc. 20: 145–7.

    CAS  Google Scholar 

  3. Halliwell B, Gutteridge JMC (1999). Free Radicals in Biology and Medicine, 3rd edn. Oxford: Oxford University Press.

    Google Scholar 

  4. Sohal RS, Brunk UT (1992). Mitochondrial production of pro-oxidants and cellular senescence. Mutat Res. 275: 295–304.

    Article  PubMed  CAS  Google Scholar 

  5. Sohal RS, Orr WC (1992). Relationship between antioxidants, prooxidants, and aging process. Ann NYAcad Sci. 663: 74–84.

    Article  CAS  Google Scholar 

  6. Ames BN, Shigenaga MK, Hagen TM (1995). Mitochondrial decay in aging. Biochim Biophys Acta 1271: 165–70.

    Article  PubMed  Google Scholar 

  7. Sohal RS, Sohal BH, Orr WC (1995). Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Rad Biol Med. 19: 499–504.

    Article  PubMed  CAS  Google Scholar 

  8. Garland D (1990). Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: a hypothesis. Exp Eye Res. 50: 677–82.

    Article  PubMed  CAS  Google Scholar 

  9. Rikans LE, Cai Y (1993). Diquat-induced oxidative damage in BCNU-pretreated hepatocytes of mature and old rats. Toxicol Appl Pharmacol. 118: 263–70.

    Article  PubMed  CAS  Google Scholar 

  10. Chance B, Sies H, Boveris A (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59: 527–605.

    PubMed  CAS  Google Scholar 

  11. Folkes LK, Candeias LP, Wardman, P (1995). Kinetics and mechanisms of hypochlorous acid reactions. Arch Biochem Biophys. 323: 120–6.

    Article  PubMed  CAS  Google Scholar 

  12. Giulivi C, Poderoso JJ, Boveris A (1998). Production of nitric oxide by mitochondria. J Biol Chem. 273: 11038–43.

    Article  PubMed  CAS  Google Scholar 

  13. Bates TE, Loesch A, Burnstock G, Clark JB (1995). Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Comm. 213: 896–900.

    Article  PubMed  CAS  Google Scholar 

  14. Bates TE, Loesch A, Burnstock G, Clark JB (1996). Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Comm. 218: 40–4.

    Article  PubMed  CAS  Google Scholar 

  15. Laporte F, Doussiere J, Vignais PV (1990). Respiratory burst of rabbit peritoneal neutrophils. Transition from an NADPH diaphorase activity to an O2(-)-generating oxidase activity. Eur J Biochem. 194: 301–8.

    Article  PubMed  CAS  Google Scholar 

  16. Klebanoff SJ (1980). Oxygen metabolism and the toxic properties of phagocytes. Ann Int Med. 93: 480–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hurst JK, Barrette WC Jr (1989). Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Molec Biol. 24: 271–328.

    Article  CAS  Google Scholar 

  18. Eiserich JP, Hristova M, Cross CE, et al. (1998). Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391: 393–7.

    Article  PubMed  CAS  Google Scholar 

  19. Fridovich I (1995). Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995; 64: 97–112.

    Article  PubMed  CAS  Google Scholar 

  20. Machlin LJ and Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1: 441–5.

    PubMed  CAS  Google Scholar 

  21. Machlin LJ, Gabriel E (1980). Interactions of vitamin E with vitamin C, vitamin B12, and zinc. Ann NY Acad Sci. 355: 98–108.

    Article  PubMed  CAS  Google Scholar 

  22. Ames BN (1983). Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221: 1256–64.

    Article  PubMed  CAS  Google Scholar 

  23. Yu MW, Zhang YJ, Blaner WS, Santella RM (1994). Influence of vitamin A, C, and E and beta-carotene on aflatoxin B1 binding to DNA in woodchuck hepatocytes. Cancer 73: 596–604.

    Article  PubMed  CAS  Google Scholar 

  24. Pauling L (1970). Evolution and the need for ascorbic acid. Proc Natl Acad Sci USA 67: 1643–8.

    Article  PubMed  CAS  Google Scholar 

  25. Benzie IF (2000). Evolution of antioxidant defence mechanisms. Eur J Nutr. 39: 53–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sitte, N., von Zglinicki, T. (2003). Free Radical Production and Antioxidant Defense: A Primer. In: von Zglinicki, T. (eds) Aging at the Molecular Level. Biology of Aging and Its Modulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0667-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0667-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6482-0

  • Online ISBN: 978-94-017-0667-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics