Skip to main content

Abstract

The main drawback of the conventional flat plate collector is its inability to operate with reasonable collection efficiencies at temperature around 80 °C, thus limiting their applications largely for providing hot water and space heating. Therefore, the major concern of solar collector designers is the reduction of heat losses from the solar energy collector to the surroundings. Designers seek economic alternatives to minimize these thermal losses, which result from conductive, convective and thermal radiative heat exchanges and also the reflection losses at the interfaces. For the utilization of solar energy for producing cold, for power generation and for pumping of water, fluid temperatures in the range of 110–150°C are required. The use of moderate vacuum between the cover glass and the absorber plate can suppress the natural convection losses from the absorber plate of the collector and will give the desired temperature and efficiency. The affect of the vacuum environment is especially pronounced when it is used in conjunction with a selective black surface on the absorber plate, making it possible to operate at a temperature of 150°C with a daily energy collection efficiency in excess of 40 percent. Because of the pressure of the atmosphere, however, evacuating the space between flat plates is technically not possible. Honeycombs, or glass supports could offer good physical support if the space were evacuated but many sealing problems remain and this approach is so far impractical. For these reasons, evacuated collectors have generally involved tubular designs, ,which have inherently higher strength to withstand external pressure and are termed as advanced collectors in this chapter. On the other hand there is much technology available in evacuating glass tubes for fluoroscent lighting and TV electron tubes applications, and collectors based on using evacuated tubes have been successfully developed. Therefore, the evacuated tubular collectors which can withstand high vacuum and can be mass produced are preferred. Their high temperature effectiveness is essential for the efficient operation of solar air conditioning systems, power generation and process heat systems. In these tubular or advanced collectors high performance is achieved by the use of the following advanced features:

  1. i)

    Vacuum insulation

  2. ii)

    Selective black absorber coatings

  3. iii)

    Anti reflective coatings films

  4. iv)

    Heat mirror coating

  5. v)

    Highly efficient removal of the absorbed heat from the solar collector by the principle of heat pipe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.C. Dickinson and P.N. Cheremisinoff (1980), “Solar Energy Technology Habdbook, Part A: Engineering Fundamentals”, Marcel Dekker, Inc., New Youk.

    Google Scholar 

  2. J.A. Duffie and W.A. Beckman (1980), “Solar Engineering of Thermal Processes”, John Wiley Sons, New York.

    Google Scholar 

  3. H.Tabor (1958), “Rediation, convection and conduction coefficients in solar collectors”, Bull. of Research Council of Israel, 6 C, 155–176.

    Google Scholar 

  4. H.C. Hottel and B.B. Woertz (1942), “The performance of flat plate solar heat collectors”, Trans ASME, 64, 9 1104.

    Google Scholar 

  5. A. Whillier (1963), “Solar energy collection and its utilization for house heating”, Sc. D Thesis, MIT.

    Google Scholar 

  6. A. Malhotra, H.P. Garg and A. Pa lit (1981), ‘Heat loss calculation of flat-plate solar collectors’ The Journal of Thermal Engineering (India), 2 (2), 59–62.

    Google Scholar 

  7. H.P. Garg and G. DATTA (1984), ‘The top loss calcula- tion for flat-plate collectors’ Solar Energy, 32 (1), 141–143.

    Google Scholar 

  8. H.C. Hottel and A. Whiller (1959), “Evaluation of flat plate solar collector performance”, Proc. Conf. on the use of Solar Energy, Univ. of Arizona, Vol. 2, 74–104.

    Google Scholar 

  9. R.W. Bliss (1959), “The derivation of several plate efficiency factors useful in the design of flay. plate solar heat collectors”, Solar Energy, 3 (4), 55–64.

    Google Scholar 

  10. H.P. Garg (1982), “Treatise on solar energy-Fundamental of solar energy utilization’ John Wiley Sons,England.

    Google Scholar 

  11. J.C. McVeigh (1977), “Sun Power: An introduction to the applications of solar energy”, Pergamon Press, Oxford.

    Google Scholar 

  12. R.L. Sanmartin and G.J. Fjeld (1975), “Experimental performance of three solar collectors”, Solar Energy 17 (6), 345–349.

    Google Scholar 

  13. J.C. McVeigh (1971), Some experiments in heating swimming polls by solar energy“, JIHVE, 39, 53–55.

    Google Scholar 

  14. J.W. Ramsey and J.T. Berzoni (1975), “Efects of selective coatings on flat plate solar collector performance”, ISES cong., Los ANGELES, Extended Abstracts, Paper No. 34 /5.

    Google Scholar 

  15. H. Heywood (1954), ‘Solar energy for water and space heating“, J. Int. Fuel, 27, 334–347.

    Google Scholar 

  16. PPG Industries (1974), “Baseline solar collectors”, one Gateway Centre, Pittsburgh, Panama, U.S.A.

    Google Scholar 

  17. F.A. Brooks (1936), “Solar Energy and its uses for heating water in California”, Bul. Calif. Agric Expt. Sta., Report No. 602.

    Google Scholar 

  18. R.N. Morse (1956), “Solar water heaters”, Proc. World Symp.on App. Solar Energy, Standford Reseach Institute, University of Arizona, Phoneix, Arizona, 101–102.

    Google Scholar 

  19. D.N.W. Chinnery (1967), “Solar water heating in south Africa”, Nat. Buld. Res. Inst. Bull 44, CSIR Research Report 248, Pretoria, South Africa.

    Google Scholar 

  20. H. Tabor (1955), “Solar energy collector design”, Bull. Research Council, 5C, ìäo. 1, Israel.

    Google Scholar 

  21. H.P. Garg and C.L. Gupta (1967), “Design of flat plate solar collector for India”, J. Inst. Engineers, India, 47 (9), 382–394.

    Google Scholar 

  22. J.E. Hill and E.R. Streed (1976), “A method of testing for rating solar collectors based on thermal performance”, Solar Energy, 18, 411–431.

    Google Scholar 

  23. F. Kreith, G.O.G. Lof, A Rabl and R. Winston (1980), “Solar collectors for low and intermediate temperature applications”, Prog. Energy Combust. Sci, 6, 1–34. 3

    Google Scholar 

  24. R.K. McGragor and A.P. Emery (1969), “Free convection through vertical plain layers: Moderate and High Prandtl number fluids”, J. Heat Transf., Trans. ASME, 91 (3), 391–403.

    Google Scholar 

  25. A.B. Meïnel and M.P. Meinel (1977), “Applied Solar Energy-An Introduction”, Addison-Wesley Publishing Company, U.S.A.

    Google Scholar 

  26. H. Benard (1901), “Les Tourbillons cellulaires Dans Une Nappe liquide Trans-portant De La Chaleur Par convection en Regime Permanent”, Ann. Chim. Phys., 23, 62–144.

    Google Scholar 

  27. J.L.O.’Toole and P.L. Silveston (1961), “Correlation of convective heat transfer in confined horizontal layers”, Chemical Engineering Progress Symposium, 57 (32), 81–86.

    Google Scholar 

  28. R.J. Goldstein and T.Y. Chu (1969), “Thermal convection in a horizontal layer of air”, Prog. in Heat and Mass Transf., Vol. 2, Pergamon Press, London.

    Google Scholar 

  29. H. Tabor (1958), “Radiation, Convection and conduction coefficients in solar collectors”, Bull. Res. Counc. Israel, Vol. 6C, 155–176.

    Google Scholar 

  30. H.Buchberg, I. Catton and D.K. Edwards (1976), “Natural convection in enclosed spaces–A review of aplication in solar energy collection”, J. Heat Transfer, 98 (2), 182–188.

    Google Scholar 

  31. K.G.T.Ho 1 lands, T.E. Unny, G.D.K. Raithby and L. Konicek (1976), “Free convection heat transfer across inclined air layers”, Trans. American Society of Mechanical ngineers, J. Heat Transfer, 98 (2), 189–193.

    Google Scholar 

  32. M.H. Cobble (1977), “Minimising convection losses in solar collectors’, Proc. Conf. Physics of Solar Energy, Tripoli, 111–112.

    Google Scholar 

  33. J.A. Scanlass, E.H. Bishop and R.E. Powe (1970), “Natural convection heat transfer between concentric spheres”, I_zt. J. Heat and Mass Transfer, Vol. 13, 1857–1872.

    Google Scholar 

  34. E.H. Bishop, L.R. Mack and J.A. Sanlass (1966), “Heat transfer by natural convection between concentric spheres”, Int. J. Heat and Mass Transfer, Vol. 9, 649662.

    Google Scholar 

  35. N. Weber, R.E. Rowe, E.H. Bishop and J.A. Scanlass, “H at transfer.by Naturai convection between vertically eccentric spheres”, ASME Paper 27-WA/HT-2.

    Google Scholar 

  36. G.D. Raithby and K.G.T. Hol lands (1975), “A General method of obtaining approximate solutions to laminer and turbulent free convections problems’’, Advances in Heat Transfer, Vol. 11, Academic Press, New York, 265315.

    Google Scholar 

  37. H. Buchberg, I. Catton and D.K. Edwards (1974), “Natural convection in enclosed spaces: A review of application to solar energy collection” ASME Paper No. 74-WA/HT/12.

    Google Scholar 

  38. A. KraussoLd (1934), “ Forsch Geb. Ingeniurw, Vol. 5, 186–191.

    Google Scholar 

  39. C. Liu, W.K. Muelles and F. Landis (1961), “Natural convection heat transfer in long horizontal cylinderical annuli”, International Developments in Heat Transfer, Paper no. 117, Part II, 976–984.

    Google Scholar 

  40. C.B. Eaton and H.A. Blum (1975), ‘The use of moderate vacuum environments as a means of increasing the collection efficiencies and operating temperatures of flat-plate collectors’ Solar Energy, 17, 151–158.

    Google Scholar 

  41. S. Dushman, edited by J.M. Lafferty (1962), ‘Scientific Foundations of Vacuum Techniques’, Second Edition, John Wiley Sons, Inc., New York.

    Google Scholar 

  42. U.Ortabasi (1976), “Indoor test methods to determine the effect of vacuum on the performance of a tubular flat plate collector”, ASME Report 76-WA/Solar-24.

    Google Scholar 

  43. W.M. Worek and Z. Levan (1979), The effect of Pressure on the performance of cylindrical solar collectors“, Proc. ISES Conference, Atlanta, Georgia, May-June 1, 1979, Paper No. F-11-D-5.

    Google Scholar 

  44. G.T. Roberts (1979), “Heat loss characteristics of an evacuated plate-in-tube collector”, Solar Enegy, 22, 137–140.

    Google Scholar 

  45. G.L. Harding and B. Window (1981), “Free molecule thermal conduction in concentric tubular solar collectors”, Solar Energy Materials, 4, 265–278.

    Google Scholar 

  46. G.L. Harding and B. Window (1981), “Thermal conduction in evacuated concentaric tubular solar energy collectors degraded by low pressure gas”, Solar Energy Materials, 4, 421–434.

    Google Scholar 

  47. S. Dushman (1949), “Scientific foundations of vacuum”, Wiley, New York.

    Google Scholar 

  48. M.L. Weidmnn and P.R. Trumpler (1946), “Thermal accommodation coefficients”, Trans. ASME, 68, 57.

    Google Scholar 

  49. O. Abreu and G. Best (1980), “Transmission, reflexion

    Google Scholar 

  50. and absorption of visible radiation by the multiple covers of flat-plate solar collectors“, Solar Energy Materials, 3, 371–380.

    Google Scholar 

  51. R.B. Pettit (1978), “Hemispherical transmittance properties of solar glazings as a function of average procedure and incident angle” Solar Energy Materials, 1, 125–140.

    Google Scholar 

  52. W.A. Shurcliff (1974), “Transmision and reflection loss of multiplate planar window of a solar-radiation collector”, Solar Energy, 16, 149–154.

    Google Scholar 

  53. A.M.Zarem and D.D.Erway (1963), “Introduction to the utilization of Solar Energy”, McGraw-Hill Book Company, Inc.

    Google Scholar 

  54. P.M.Worek and Z.Lavan (1979), “Cylindrical glass tubes for flat-plate collector tubes”, Proc. ISES Conference, Atlanta, Georgia, May 28-June 1, 1979, Paper No.F-II-D-4.

    Google Scholar 

  55. M.F.Merriam, R.A.Missman, K.S.Ong and K.Seshan, (1975), “Collector Window from Fluorescant light tubes”, Proc. ISES Conference, Los Angeles, July 1975.

    Google Scholar 

  56. S.H.Janke and R.F.Boehm (1979), “Three dimensional ray tracing through concentric tubular elements using vector methods”, Proc.ISES Conference, Atlanta, Georgia, May 28-June 1, 1979, Paper No.F-II-D-2.

    Google Scholar 

  57. J.D.Felsne (1979), “Analysis of an evacuated cylindrical solar collector”, Solar Energy, 22, 567–570.

    Google Scholar 

  58. H.P.Garg, A.R.Shukla, R.C.Agnihotri, S.Chakravertty and Indrajit (1982), “Studies on advanced tubular solar energy collector”, Proc. National Solar Energy Convention, Bangalore ( India ), Jan. 22–24, 1982.

    Google Scholar 

  59. H.P.Garg, A.R.Shukla, R.C.Agnihotri, S.Chakravertty and indrajit (1983), ‘Study of transmittance in a flat-plate collector with double cylindrical glass cover“, Energy conversion and Management, 23 (1), 33–36.

    Google Scholar 

  60. M.K.Selcuk (1977), “Experimental evaluation of a fixed collector employing Vee-Trough concentrator and vacuum tube receivers”, Proc. Annual Meeting of American Society of Mechanical Engineers, Atlanta, Georgia, Nov. 27 to Dec. 2, 1977, 32–37.

    Google Scholar 

  61. M.K.Selcuk (1979), “Analysis, development and testing of a fixed tilt solar collector employing reversible Vee-Trough reflectors and vacuum tube receivers”, Solar Energy, 22, 413–426.

    Google Scholar 

  62. W.T. Welford and R. Winston (1978), “The optics of non imaging concentrators”, Academic Press, New York.

    Google Scholar 

  63. D.C. Beckley and G.R. Mather (1975), “Analysis and experimental tests of a high performance evacuated tube collector”, Owens-Illinois, Toledo, Ohio.

    Google Scholar 

  64. B. Window and I.M. Bassett (1981), “Optical collection efficiencies of tubular solar collectors with specular reflectors”, Solar Energy, 26, 361–386.

    Google Scholar 

  65. B. Window and J. Zybert (1981), “Optical collection efficiencies of arrays of tubular collectors with diffuse reflectors”, Solar Energy, 26, 325–331.

    Google Scholar 

  66. W.R. Mclntire (1980), “Stationary concentrators for tubular evacuated receivers: Optimization and comparison of reflector designs”, Proc. Annl. Meet of Am. Sec. of ISES, New York, 505–509.

    Google Scholar 

  67. W.R. Mclntire (1980), “New reflector design which avoids losses through gaps between tubular absorbers and reflectors’, Solar Energy, 25, 215–220.

    Google Scholar 

  68. G.R. Mather and D.C. Beckley (1976), “Performance of an evacuated tubular collector using non-imaging reflectors”, Proc. A Joint Congress of Am.Sec. of ISES and Solar Energy Society of Canada, Aug. 15–20, 1976, Winnipeg, Canada, Vol. 2: Sharing the Sun, P. 64–78.

    Google Scholar 

  69. J.J.0 ‘Gallagher, A.Rabl and R.Winston and W.Mclntire (1980), ’’Absorption enhancement in Solar collectors by multiple reflections“, Solar Energy, 24 (3), 323–326.

    Google Scholar 

  70. W.L.R. Emmett (1911), “Aparatus for utilizing solar heat”, U.S. Patent 980, 505.

    Google Scholar 

  71. E. Speyer (1965), ‘Solar energy collection with evacuated tubes“, Trans. ASME, J. of Power, 87, 270–276.

    Google Scholar 

  72. U. Ortabasi and F.P. Fehlner (1979), “Cusp mirror-heat pipe evacuated tubular solar thermal collector”, Solar Energy, 24, 477–489.

    Google Scholar 

  73. Annon (1979), “Solartron TC-100 Vacuum tube collector” General electric document No. 78 SD 54215 B, August, 1979, Philadelphia, Pa 19001, pp. 32.

    Google Scholar 

  74. G. Faninger (1981), “Solar thermal conversion: Low and High temperature heat production solar thermal power plants”, Proc. Second International Symposium on Non-conventional Energy, 14 July-6 August, 1981, Trieste Italy.

    Google Scholar 

  75. J.C. De Grijs, H. Bloem and R. De Vann (1981), “Evacuated tubular collector with two phase heat transfer into the system”, Paper presented in the solar World Forum, Brighton (England) August 23–28, 1981.

    Google Scholar 

  76. K. Hinotani, M. Osumi and K. Matsumoto (1981), “The performance of an evacuated glass tube collector upto medium temperature and its application to industrial process heat production”, Paper presented in the Solar World Forum, Brighton ( England ), August 23–28, 1981.

    Google Scholar 

  77. G.L. Harding and B. Window (1980), “Materials problems in evacuated solar energy collectors”, Paper presented at the International CoxLf. on Materials for Photothermal solar energy conversion, Ajaccio ( Corsica ), May 1980.

    Google Scholar 

  78. J.A. Duffie and W.A. Beckman, “Solar Energy Thermal Processes”, John Wiley Sons, New York, 1974.

    Google Scholar 

  79. F.L.Lansing (1976), “Heat transfer criteria of a tubular solar collector - The effect of reversing the flow pattern on collector performance”, Deep space Network Progress Report 42–31, Jet Propulsion Laboratory, Pasandena, CA, 108–114, Feb. 1976.

    Google Scholar 

  80. F.L. Lansing (1976). Lansing (1976), “The transient thermal response of a tubular solar collector”, Technical memorandum, NASA, 33–781, Feb. 1976.

    Google Scholar 

  81. U. Ortabasi and F.P. Fehlner (1975), “Evacuated tubular collector utilizing a heat pipe”, Progress Report May 1, 1975 - August 31, 1975, No. C00/2608–1.

    Google Scholar 

  82. M.L. Joy (1978), “Heat Pipes - Proven versatility in heat transport”, The Canadian Mining and Metallurgical Bulletin, August 1978, 1–10.

    Google Scholar 

  83. T.P. Cotter (1965), “Theory of heat pipes” Los Alamos Sci, Lab. Report LA-3246-MS, Feb. 1965.

    Google Scholar 

  84. P.D. Dunn and D.A. Reay (1976), ‘Heat pipes“ Pergamon Press Ltd., Oxford.

    Google Scholar 

  85. S.W. Chi (1976), “Heat pipe theory and Practice” McGraw-Hill Book Co. New York.

    Google Scholar 

  86. C.A. Busse (1973), “Theory of the ultimate heat transfer limit of cylindrical heat pipes”, Int. J. of Heat Mass Transf., 16, 169–186.

    Google Scholar 

  87. J.E. Kemme (1969), “Heat pipe design considerations”, Report LA-4221-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, USA.

    Google Scholar 

  88. K.T. Faldman (1975), “Heat pipe: Theory, design and applications”, Lecture Notes for Heat Pipe Technology, Short Course, Jan. 6–10, 1975. The University of New Mexico, Albuquerque, New Mexico, USA.

    Google Scholar 

  89. J.C.C. Fan, F.J. Bachnor and R.A. Murphy (1978), App. Phys. Lett. 28, 440.

    Google Scholar 

  90. H.Y.B. Mar, J.H. Lin, P.P. Zimmer, R.E. Peterson, and J.S. Gross, (1975), ‘Optical Coatings for flat-plate solar collectors’, Report to ERDA under contract No. NSF-C-957.

    Google Scholar 

  91. C.M. Lampert (1979), “The use of coatings for enhansed solar thermal energy collection”, Report No. LBL-8072, Lawrence Laboratory, Univ. of California, USA.

    Google Scholar 

  92. R.B. Goldner and H.M. Haskal (1975), “Indium tin oxide coated silicon as a selective”, Applied Optics, 14, 2328.

    Google Scholar 

  93. S.M. Thomsen (1951), ‘Low reflection films produced on glass in a liquid fluosilicic acid bath’ RCA Review, 1951.

    Google Scholar 

  94. V.G. Levich (1962), ‘Physico-Chemical Hydrodynamics’ Prentice Hall, Inc. Englewood Cliffs, N.J., p. 674.

    Google Scholar 

  95. C.K. Hsieh and R.W. Coldeway (1974), ‘Study of thermal radiative properties of anti-reflection glass for flat-plate solar collector cover’, Solar Energy, 1 (2), 6372.

    Google Scholar 

  96. H. Tabor (1955), ‘Seletive radiation II. Wavelength descrimination“ Trans. Conf. Use solar Energy, Tucson, Arizona, 2-A, 31–40.

    Google Scholar 

  97. J.T. Gier and R.V. Dunkle (1955), ‘Selective spectral characteristics as an important factor in the efficiency of solar collectors’ Trans. Conf. Use Solar Energy, Tucson, Arizona, 2-A, 41–56.

    Google Scholar 

  98. P. Agnihotri and B.K. Gupta (1981), ‘Solar selective surfaces’ John Wiley Sons, New York.

    Google Scholar 

  99. Ge Xin-shi, Gong Bao and Yu Shan-qing (1980), ‘Spectrally selective coatings for solar energy utilization’ Science Press, Beijing, China.

    Google Scholar 

  100. R.E. Peterson and J.W. Ramsay (1975), ‘Thin film coatings in solar-thermal power systems’ J. Vac. Sci. Technol., 12, 174.

    Google Scholar 

  101. B.O., Seraphin (1979), ‘Spectrally selective surfaces and their impact on photothermal solar energy conversion’ Topic in Applied Physics, Vol. 31, Springer, New York.

    Google Scholar 

  102. G.M. Lampert (1979), ‘The use of coatings for enhanced solar energy collection’ Solar Energy Materials, 1, 81.

    Google Scholar 

  103. M. Sikkens (1980), ‘Spectrally selective solar energy materials’ Thesis, Drukkerij Dykstra Niemeyer BV-Groningen.

    Google Scholar 

  104. H. Tabor (1967), ‘Selective surfaces for solar collectors’ Low temperature Engineering Application of solar energy, ASHRAE, New York, Chapter 4, 41–52.

    Google Scholar 

  105. S.N. Kumar, L.K. Malhotra and K.L. Chopra, 1980, ‘Low cost electroless nickel black coatings forphotothermal conversion, Solar Energy Materials, 3, 519–532.

    Google Scholar 

  106. G.E. McDonald, B.Buzek and H. Curtis (1976), ‘Fundamental studies of black chrome for solar collector use’ NASA TMX-73461, Aug. 1976.

    Google Scholar 

  107. H.C. Hottel and P.A. Unger, (1959), ‘The properties of a copper oxide-aluminium selective black surface of solar energy’, Solar Energy, 3 (3), 10–15.

    Google Scholar 

  108. D.M. Mattox and R.R. Sowell, (1974), ‘High absorptivity solar absorber coatings’,J. Vac. Sci. Technol, 11(4), 793–796.

    Google Scholar 

  109. E.A. Christie, (1970), ‘Spectrally selective blacks for solar energy collectors’, Int. Sol. Energy Conf., Paper No. 7/81. Melbourne, Australia.

    Google Scholar 

  110. H.Y.B. Narr, R.E. Peterson and P.B. Zimmer, (1976), ‘Low cost coatings for flat-plate solar collectors’, Thin Solid Films 39, 95–103.

    Google Scholar 

  111. P. Kokoropolulos, E. Salem and F. Daniels (1959), ‘Selective radiation coatings, preparation and high temperature stability’, Solar’Energy, 3 (4), 19.

    Google Scholar 

  112. R.B. Gilette, (1960), ‘Selective emissive materials for solar heat absorbers’, Solar Energy, 4 (4), 24–32.

    Google Scholar 

  113. R.R. Sowel and D.M. Mattox, (1978), Plating and Surface Finishing, 65, 50.

    Google Scholar 

  114. G. Zajac and A. Ignatiev, (1980), Solar Energy Materials, 2, 239.

    Google Scholar 

  115. B. Window, I.T. Ritchie and K. Cathro, (1978), ‘Selective electroplated chromium blacks’, Applied Optics, 17, 2637–2644.

    Google Scholar 

  116. Vander M. Leij, (1979), Thesis Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  117. G.L. Harding, (1976), ‘Sputtered metal carbide solar-selective absorbing surfaces’, J. Vec. Sci. Technol. 13 (5), 1070–1072.

    Google Scholar 

  118. R.Blickensderfer, D.K. Deardorff, and R.L. Lincoln, (1977), Solar Energy, 19, 429.

    Google Scholar 

  119. J.J. Mason and R.Blower, (1980), Conference Internationale sur Les Materiaux pour la conversion photothermique de l’ Energic solaire, Ajaccio, Abstracts, P. 49. ( CNRS/CENG, France ).

    Google Scholar 

  120. B.O. Seraphin, (1976), ‘Chemical Vapour Deposition of Thin Semi-conductor films for solar Energy conversion’, Thin Solid Films, 39, 87.

    Google Scholar 

  121. M. Janai, D.D. Allred, D.C. Booth and B.O. Seraphin, (1979), Solar Energy Materials, 1, 11.

    Google Scholar 

  122. G. Hass, (1955), ‘Filmed surfaces for Reflecting Optics’, J. Opt. Soc. Am., 45, 945.

    Google Scholar 

  123. D.A. Williams, T.A. Lappin and J.A. Duffie, (1963), J. Engin. Power, 85, 213.

    Google Scholar 

  124. R.B. Pettit and R.R. Sowell, (1975), ‘Solar absorptance and emittance properties of several solar coatings’, Report SAND 75–5066, Sandia Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  125. D.C. Martin and R. Bell, (1960), Proc. Conf. on Coatings for the Aerospace Environment, WADD-TR-60-TB, Dayton, Ohio.

    Google Scholar 

  126. R. Schmidt and R. Park, (1965), Appl. Opt. 4, 1917.

    Google Scholar 

  127. A.B. Meinel, D.B. Mckenney and W.T. Beauchamp, (1975), Tech. Rept. NSF-RANN/SEIGE-41895.

    Google Scholar 

  128. R.L. Long, (1965), ‘A review of recent Air Force Research on Selective Solar Absorber’, J. Engin. Power, 87, 277.

    Google Scholar 

  129. K.G.T. Hollands, (1963), ‘Directional selectivity, emittance, and absorptance properties of Vee corrugated specular surfaces’, Solar Energy, 7 (3), 108–116.

    Google Scholar 

  130. L.C. Botten and I.T. Ritchie, (1977), Opt. Comm, 22, 2, 421.

    Google Scholar 

  131. F. Abele’s (1980), Conference Internationale Sur les Materiaux Pour is conversion Photothermique de l’ ‘Energie Solaire Ajaccio, Abstracts P. 13, ( CNRS/CENG, France ).

    Google Scholar 

  132. R. Petit, (1980), Conference Internationale Sur leb Materiaux pour la conversion photothermique de l’ ‘Energie Solarie, Ajaccio, Abstracts p. 15, ( CNRS/CENG, France ).

    Google Scholar 

  133. A. Wirgin, (1980), Conference Internationale Sur les Matriaux pour is conversion photothermique de l’ `Energic Solaire, Ajaccio, Abstracts p. 18, ( CNRS/CENG, France )

    Google Scholar 

  134. C. Horwitx, (1974), “A new solar selective surfaces’, Opt. Commun., 11, 210.

    Google Scholar 

  135. J.J. Cuomo, J.F. Ziegler and J.M. Wo;:dall, (1975), ‘A New Concept for Solar Energy Thermal Conversion“, Appl. Phys. Lett.,: 6, 557.

    Google Scholar 

  136. G.L. Harding, S. Craig, P. Curmi and M. Lake (1980), Conference Internationale Sur les Materiaux Pur is Conversion Photothermique de l’ ‘Energie Solarace, Ajaccio, Abstracts p. 21 ( CNRS/CENT;, France ).

    Google Scholar 

  137. J.C. Maxwell Garnett, (1906), Philos. Trans. R. Soc., Lond. B 205, 237.

    Google Scholar 

  138. C.G. Gransqvist and G.A.Niklasson, (1977), Appl. Phys. Lett., 31, 237.

    Google Scholar 

  139. R.W. Cohan, G.D. Cody, M.D. Coutts and B. Abe lis, (1973), Phys. Rev., B8, 3669.

    Google Scholar 

  140. H.G. Oraighead and R.A. Buhrman, (1978), J. Vac. Sci. Technol., 15, 269.

    Google Scholar 

  141. G.B. Smith, (1977), J. Phys., D 10, L 39.

    Google Scholar 

  142. C.M. Lampert and J. Washburn, (1979), Solar Energy Material, 1, 1 /2, 69.

    Google Scholar 

  143. D.P. Grimmer and R.K. Collier (1978), ‘Solar-selective absorber coatings on glass substrates for use in evacuated collectors’ 1978 Annual ISES Conf., Denver, Colorado, Aug. 28–31.

    Google Scholar 

  144. H.P. Garg, A.R. Shukla, R.C. Agnihotri and S. Chakravertty (1983), ‘Suitable selective absorbers for all glass, evacuated, tubular, solar energy collectors, Applied Energy, 13, 295–315, 1983.

    Google Scholar 

  145. H.P. Gaïg, S. Chakravertty, A.R. Shukla, R.C. Agnihotri and Indrajit (1983), ‘Advanced tubular solar energy collector A state of the art’ Energy Convers. and Management. 23 (3), 157–169.

    Google Scholar 

  146. L.F. Drummeter, Jr. and G. Hass (1964), ‘Solar absorptance and thermal emittance of evaporated coatings’ from the book physics of thin films, Vol. 2, Academic Press, New York, p. 305–361.

    Google Scholar 

  147. J.D. Garrison,(1977), ‘Selective absorbers on glass’, Proc. The los Angeles Meet. of the Am. Electro. Soc., 26–30.

    Google Scholar 

  148. H.S.Gurev, (1977), ‘Thin film CrOx selective absorbers stable above 500 °C, Proc. Annual Meeting Am. Sec. of ISES, June 6–19, 1977, Orlando, 5.5–5.7, 1977.

    Google Scholar 

  149. D.P. Grimmer and R.K. Collier, (1981), ‘Black Chrome Solar Selective coatings electrodeposited on metallized glass tubes’ Solar Energy, 26, 467–469.

    Google Scholar 

  150. Chrom-Onyx process, Harshaw Chemical Company, Cleveland, Ohio.

    Google Scholar 

  151. G.L. Harding, (1978), ‘Sputtered metal silicide solar selective absorbing surface’, J. Vacc. Sci. Technol., 15 (1), 65–69.

    Google Scholar 

  152. R. Blickernsderfer, R.L. Lincon and D.K. Deordorff

    Google Scholar 

  153. Reflectance and émittance of spectrally selective titanium and zirconium nitrides’, Technical Report 8167, Bureau of Mines, Washington, D.C.

    Google Scholar 

  154. G.L.Harding, B.Window, D.R.Mckanzie, A.R.Collins and C.M.Horwitz(1-979), ‘Cylindrical magnetron sputtering system for coating solar selective surfaces onto batches of tubes’., J.Vac.Sci.Tech., 16(6), 2105–2108.

    Google Scholar 

  155. G.L.Harding, (1980;, ‘Absorptance and emittance of metal carbide selective surfaces sputter deposited onto glass tubes’ Solar Energy Materials, 2, 469–481.

    Google Scholar 

  156. J.E.Hil1 and E.R.Streed (1976), ‘A method for rating solar collectors based on thermal performance’ Solar Energy, 18 (5).

    Google Scholar 

  157. ASHRAE Standard 93–77 (1977), ‘Methods of testing to determine the thermal performance of solar collectors’ ASHRAE, 345 East 47th Street, New York 10017, 1977.

    Google Scholar 

  158. BSE-Guidlines (1978), ‘Usability of solar collectors’ A Solar collector efficiency test, Bundesverband Solar energie, Essen, Germany.

    Google Scholar 

  159. J.M.Suter, F.Widder and P.Kesselring (1979), ‘Warmetroger and Kenngroben Von Sonnenkollektoren’ Eidg. Institute for Reak-torforschung, Wurenlingen, Switzerland.

    Google Scholar 

  160. AFNOR 50–501 (1977), ‘Measure des performances Thermiquecapteurs Solaries’, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garg, H.P. (1987). Advanced Flat Plate Collectors. In: Advances in Solar Energy Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0659-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0659-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8434-7

  • Online ISBN: 978-94-017-0659-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics