Advertisement

Group Theory Can Explain the Mobility of Paradoxical Linkages

  • José M. Rico
  • Bahram Ravani
Chapter

Abstract

The present contribution shows that a closer look into the applications of group theory to the kinematics of spatial linkages provides a concise, simple and correct explanation of the mobility of several linkages classified as overconstrained and paradoxical. The analysis readily yields the Bennett linkage as well as families of R-C-R-C and H-C-H-C linkages, all of them overconstrained and paradoxical. Moreover, the analysis not only yields the geometric characteristics of the linkages but also the relationships between the displacements of the different kinematic pairs. Furthermore, these relationships easily provide, when the motion of the linkages starts from a special configuration, the input-output equations. The study of paradoxical linkages are important to robot kinematics because they are inherently more rigid that trivial linkages and they might provide better architectures for serial or parallel manipulators.

Keywords

Group theory mobility paradoxical linkages overconstrain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J., (1982), Spatial Kinematic Chains, New York: Springer Verlag.zbMATHCrossRefGoogle Scholar
  2. Fanghella, P., (1988), Kinematics of Spatial Linkages by Group Algebra: A Structure-Based Approach, Mechanism and Machine Theory, vol. 23, pp. 171–183.CrossRefGoogle Scholar
  3. Fanghella, P. and Galletti, C., (1995), Metric Relations and Displacement Groups in Mechanism and Robot Kinematics”, ASME Journal of Mechanical Design, vol. 117, pp. 470–478.CrossRefGoogle Scholar
  4. Hervé, J.M., (1978), Analyse Structurelle des Mécanismes par Groupe des Déplacements, Mechanism and Machine Theory, vol. 13, pp. 437–450.CrossRefGoogle Scholar
  5. Rico, J.M., and Ravani, B. (2000), Designing Linkages with Symmetric Motions: The Spherical Case, in Advances in Robot Kinematics, J. Lenarčič, and M.M. Stanišié eds. Dordrecht: Kluwer Academic Publishers.Google Scholar
  6. Rico, J.M., and Ravani, B., (2001), On Mobility Analysis of Linkages Using Group Theory, Accepted for Publication, ASME Journal of Mechanical Design.Google Scholar
  7. Waldron, K. J., (1979), Overconstrained Linkages, Environment and Planning B, Vol. 6, pp. 393–402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • José M. Rico
    • 1
  • Bahram Ravani
    • 2
  1. 1.Dept. de Ingeniería Mecánica CelayaInstituto Tecnológico de CelayaGto.México
  2. 2.Dept. of Mechanical and Aeronautical EngineeringUniversity of California, DavisDavisUSA

Personalised recommendations