Advertisement

Hierarchical Kinematic Analysis of a Redundant Robot

  • Daniel Martins
  • Raul Guenther
Chapter

Abstract

This paper briefly reviews the hierarchical kinematic analysis, and apply it to a redundant manipulator. This application is done by extending the Jacobian matrix of the redundant manipulator with a careful selection of an extra row. This method is applied to the Roboturb manipulator, a redundant robot specifically designed to repair eroded hydraulic turbine blades.

Keywords

hierarchical kinematic analysis redundant manipulators graph theory screw theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillieul, J. (1985). Kinematic programming alternatives for redundant manipulators. In Proc. 1985 IEEE Int. Conf. Robotics & Automation, pages 722–728.Google Scholar
  2. Guenther, R., Simas, H., and de Pieri, E. R. (2000). Concepção cinemática de um manipulador para volumes de trabalho restritos. In Proceedings of the Congresso Nacional de Engenharia Mecânica,in CDROM. In English : Kinematic conception of a manipulator for constrained workspaces. Google Scholar
  3. Hunt, K. H. (1987). Robot kinematics—a compact analytic inverse solution for velocities. Trans. ASME, Journal of Mechanisms, Transmissions and Automation in Design, 109: 42–49.CrossRefGoogle Scholar
  4. Jantzen, J. (1996). Digraph Analyses of Linear Control Systems. Technical University of Denmark, Dept of Automation. publ. 96-H-838 (lecture notes).Google Scholar
  5. Klein, C., Chu-Jenq, C., and Ahmed, S. (1995). A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators.Google Scholar
  6. Klein, C. A. and Huang, C. H. (1983). Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Transactions on Systems Man and Cybernetics, 13 (3): 245–250.CrossRefGoogle Scholar
  7. Martins, D. (2002). Hierarchical Kinematic Analysis of Robot Manipulators. PhD thesis, Universidade Federal de Santa Catarina- UFSC, Florianbpolis, SC - Brazil.Google Scholar
  8. Martins, D. and Guenther, R. (2001). Hierarchical singularity analysis of robots. In Proceedings of the Nineth International Symposium on Dinamic Problems in Mechanics -IX DINAME, pages 219–224, Florianopblis–Brazil. Brazilian Society of Mechanical Sciences.Google Scholar
  9. Martins, D. and Guenther, R. (2002). Hierarchical kinematic analysis of robots. Submitted to Mechanism and Machine Theory Google Scholar
  10. Nenchev, D. N. (1989). Redundancy resolution through local optimization: A review. J. Robot. Syst., 6 (6): 769–798.zbMATHCrossRefGoogle Scholar
  11. Pissanetsky, S. (1984). Sparse Matrix Technology. Academic Press, New York.Google Scholar
  12. Reinschke, K. J. (1988). Multivariable control: a graph-theoretic approach. Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Daniel Martins
  • Raul Guenther
    • 1
  1. 1.Departamento de Engenharia MecnicaUniversidade Federal de Santa CatarinaFlorianpolisBrazil

Personalised recommendations