Advertisement

Trajectory Tracking Control for a Cable Suspension Manipulator

  • T. Heyden
  • T. Maier
  • C. Woernle
Chapter

Abstract

The underconstrained cable suspension manipulator CABLEV moves a payload platform in space by three spatially arranged cables with computer-controlled winches. To make the payload platform track prescribed reference trajectories in space, a two-stage control concept is presented. A nonlinear feedforward control that exploits the flatness property of the system generates control inputs for the undisturbed motion along reference trajectories. Asymptotically stable tracking behaviour is achieved by a superimposed linear feedback of actual state variables.

Keywords

cable suspension manipulator nonlinear control flat systems parallel kinematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, T. and Osumi, B., (1992), Three Wire Suspension Robot, Industrial Robot, no. 19, pp. 17–22.Google Scholar
  2. Dagalakis, N.G., Albus, J.S., Wang, B.L., Unger, J., and Lee, J.D. (1991), Stiffness Study of a Parallel Link Robot Crane for Shipbuilding Applications, ASME Journal of Offshore Mechanics and Arctic Engineering, no. 111, pp. 183–193.CrossRefGoogle Scholar
  3. Delaleau, E. and Rudolph, J. (1995), Decoupling and Linearization by Quasi-Static Feedback of Generalized States, Proc. 3rd European Control Conference ECC’95, Rome, pp. 1069–1074.Google Scholar
  4. Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1992), On Differentially Flat Nonlinear Systems, In Fliess, M. (Ed.): Nonlinear Control System Design, Pergamon Press, pp. 408–412.Google Scholar
  5. Kecskeméthy, A. (1995), Object-Oriented Modeling of Mechanical Systems, In: Angeles, J. and Kecskeméthy, A. (Eds.): Kinematics and Dynamics of Multibody Systems, Berlin, Springer-Verlag, pp. 217–276.Google Scholar
  6. Maier, T. and Woernle, C. (1998), Inverse Kinematics for an Underconstrained Cable Suspension Manipulator, In Lenarcic, J. and Husty, M. (Eds.): Advances in Robot Kinematics: Analysis and Control, Kluwer Academic Publishers, Dordrecht, pp. 97–104.CrossRefGoogle Scholar
  7. Maier, T. and Woernle, C. (2000), Dynamics and Control of a Cable Suspension Manipulator, The 9th German-Japanese Seminar, Nonlinear Problems in Dynamical Systems -Theory and Applications, University of Duisburg, Germany.Google Scholar
  8. Maier, T. (2001), Bahnsteuerung eines seilgefuehrten Handhabungssystems - Modellbildung, Simulation and Experiment, Dissertation, University of Rostock.Google Scholar
  9. Ming, A. and Higuchi, T. (1994), Study on Multiple Degree-of-Freedom Positioning Mechanism Using Wires, Int. Journal of the Japanese Society for Precision Engineering, no. 28, pp. 131–138 and 235–242.Google Scholar
  10. Sawodny, O., Aschemann, H., Lahres, S., and Hofer, E.P. (1999), Tracking Control for Automated Bridge Cranes, In: Tzafestas, S. (Ed.): Advances in Manufacturing, Berlin, Springer Verlag, pp. 310–320.Google Scholar
  11. Tadokoro, S., Maeda, K., Takamori, T., Hiller, M., and Verhoeven, R. (1999), Design of Parallel Robot Driven by Redundant Cables: WARP Manipulator. In: Kecskeméthy, A., Schneider, M., and Woernle, C. (Eds.): Advances in Multibody Systems, Graz University of Technology, pp. 359–369.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • T. Heyden
    • 1
  • T. Maier
    • 1
  • C. Woernle
    • 1
  1. 1.Institute of Drive Systems and MechatronicsUniversity of RostockGermany

Personalised recommendations