Skip to main content

The Effect of Hydrodynamics on Biological Materials

  • Chapter
Advances in Bioprocess Engineering

Abstract

The delicacy of biological materials with respect to extremes of temperature, pH and/or mechanical forces is a distinguishing feature of many bioprocesses. In mainstream chemical processes, particles are often inherently robust, or might be modified to improve their behaviour in this respect. On the other hand, biological materials are usually fragile and easy damaged by hydrodynamic or “shear” forces in processing. They are not easily modified for robustness. Because of this problem, research on this aspect of biological performance is essential, and yet it is strewn with pitfalls for the unwary, and much published work in this field is flawed to some extent. Even the term “shear damage” is problematic. It is fine as a shorthand for hydrodynamic or fluid-mechanical damage, but its use has not always resulted in clear thinking about the underlying processes. Although this may seem a trivial point, it is symptomatic of deeper problems, some of which will be described later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Rubeai, M., Singh, R.P. Emery, A.N. and Zhang, Z. (1995) Cell cycle and cell size dependence of susceptibility to hydrodynamic forces, Biotechnol. Bioeng. 46, 88–92.

    CAS  Google Scholar 

  • Al-Rubeai, M., Singh, R.P., Goldman, M. and Emery, A.N. (1995) Death mechanisms of animal cells in condition of intensive agitation, Biotechnol, Bioeng. 45, 463–472.

    Article  CAS  Google Scholar 

  • Ayazi Shamlou, P., Makagiansar, H.Y., Ison, A.P., Lilly, M.D. and Thomas, C.R. (1994) Turbulent breakage of filamentous micro-organisms in submerged culture in mechanically stirred bioreactors, Chem. Eng. Sci. 49, 2621–2631.

    Article  Google Scholar 

  • Ayazi Shamlou, P. Siddiqi, S.F. and Titchener-Hooker, N.J. (1995) A physical model of high-pressure disruption of Bakers’ yeast cells, Chem. Eng. Sci. 50, 1383–1391.

    CAS  Google Scholar 

  • Ayazi Shamlou, P. Stavrinides, S., Titchener-Hooker, N. and Hoare, M. (1994) Growth-independent breakage frequency of protein precipitates in turbulently agitated bioreactors, Chem. Eng. Sci. 49 2647–2656.

    Google Scholar 

  • Baldyga, J. and Bourne, J.R. (1995) Interpretation of turbulent mixing using fractals and multifractals, Chem. Eng. Sci. 50, 381–400.

    Article  CAS  Google Scholar 

  • Barresi, A.A. (1997) Experimental investigation of interaction between turbulent liquid flow and solid particles and its effects on fast reactions, Chem. Eng. Sci. 52, 807–814.

    Article  CAS  Google Scholar 

  • Born, C., Zhang, Z., Al-Rubeai, M. and Thomas C.R. (1992) Estimation of disruption of animal cells by laminar shear stress, Biotechnol. Bioeng. 40, 1004–1010.

    Article  CAS  Google Scholar 

  • Boulton-Stone, J.M. (1995) The effect of surfactant on bursting gas bubbles, J. Fluid Mech. 302, 231–257.

    Article  CAS  Google Scholar 

  • Boulton-Stone, J.M. and Blake, J.R. (1993) Gas bubbles bursting at a free surface, J. Fluid Mech. 254, 437466.

    Google Scholar 

  • Desai, R.B., Kolhakar, R.V., Joshi, J.B., Ranade, V.V. and Mashelkar, R.A. (1995) Turbulence structure in bubble disengagement zone: role of polymer addition, AIChE. J. 41, 1329–1332.

    CAS  Google Scholar 

  • Dey, D., Boulton-Stone, J.M., Emery, A.N. and Blake, J.R. (1997) Experimental comparisons with a numerical model of surfactant effects on the burst of a single bubble, accepted for publication in Chem. Eng. Sci.

    Google Scholar 

  • Ducoste, J.J., Clark, M.M. and Wheetman, R.J. (1997) Turbulence in flocculators: effects of tank size and impeller type, AIChE J. 43, 328–338.

    CAS  Google Scholar 

  • Günkel, A.A. and Weber, M.E. (1975) Flow phenomena in stirred tanks. Part 1. The impeller stream, AIChE J. 21, 931–949.

    Google Scholar 

  • Harrington, T.J., Gainer, J.L. and Kirwan, D.J. (1991), The effects of fluid shear on immobilized enzyme kinetics, Enz. Microbial Technol. 13, 610–616.

    Article  CAS  Google Scholar 

  • Hiller, S., Bruce, D.M. and Jeronimidis, G. (1996) A micropenetration technique for mechanical testing of plant cell walls, J. Text. Studies 27, 559–587.

    Article  Google Scholar 

  • Joshi, J.B., Elias, C.B. and Patole, M.S. (1996) Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells, The Chem. Eng. J. 62, 121–141.

    CAS  Google Scholar 

  • Jüsten, P., Paul, G.C., Nienow, A.W. and Thomas, C.R. (1996) Dependence of mycelial morphology on impeller type and agitation intensity, Biotechnol. Bioeng. 52, 672–684.

    Article  Google Scholar 

  • Jüsten, P. Paul, G.C., Nienow, A.W. and Thomas, C.R. (1997) A mathematical model for agitation-induced fragmentation of Penicillium chrysogenum, Bioprocess Eng.,in press.

    Google Scholar 

  • Kao, R.L., Edwards, D.A., Wasan, D.T. and Chen, E. (1992) Measurement of interfacial dilatational viscosity at high rates of interfacial expansion using the maximum bubble pressure method. I. Gas-liquid surface, J. Coll. Int. Sci. 148, 247–256.

    Article  CAS  Google Scholar 

  • Kim, M.H., Lee, S.B. and Ryu, D.D.Y. (1982) Surface deactivation of cellulase and its prevention, Eng. Microbial Technol. 4, 99–103.

    Article  CAS  Google Scholar 

  • Kioukia, N., Al-Rubeai, M., Zhang, Z., Emery, A.N., Nienow, A.W. and Thomas C.R. (1995) A study of uninfected and baculovirus-infected Spodoptera fugiperda cells in T- and spinner flasks, Biotechnol. Lett. 17, 7–12.

    Article  CAS  Google Scholar 

  • Kleinig, A.R. and Middelberg, A.P.J. (1996) The correlation of cell disruption with homogenisation valve pressure gradient determined by computational fluid dynamics, Chem. Eng. Sci. 51, 5103–5110.

    Article  CAS  Google Scholar 

  • Kleinig, A.R., Middelberg, A.P.J., Mashmoushy, H., Zhang, Z and Thomas C.R. (1996) Can we predict the breakage of yeast cells?, CHEMECA ‘86, Sydney, Australia, 30th September - 2nd October, 1996, 4, 117121. ISBN 0 85825 658 4.

    Google Scholar 

  • Kolmogorov, A. (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS, 30 301–305.

    Google Scholar 

  • Kolmogorov, A. (1941b) Dissipation of energy in the locally isotropic turbulence. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 32 16–18.

    Google Scholar 

  • Maa, Y.F. and Hsu, C.C. (1996) Effect of high shear on proteins, Biotechnol. Bioeng. 51, 458–465.

    Article  CAS  Google Scholar 

  • Martin, S.M. and Bushell, M.E. (1996) Effect of hyphal micromorphology on bioreactor performance an antibiotic-producing Saccharopolyspora erythraea cultures, Microbiol. 142, 1783–1788.

    Article  CAS  Google Scholar 

  • McComb, W.D. (1990) The physics of turbulence, p.82, Oxford Science Publications, Oxford University Press, Oxford. UK, ISBN 0 19 856 256.

    Google Scholar 

  • Michaels, J.D., Mallik, A.K. and Papoutsakis, E.K. (1996) Sparging and agitation-induced injury of cultured animal cells: do cell-to-bubble interactions in the bulk liquid injure cells?, Biotechnol. Bioeng. 51, 399–409.

    Article  CAS  Google Scholar 

  • Michaels, J.D., Nowak, J.E., Mallik, A.K., Koczo, K., Wasan, D.T. and Papoutsakis, E.T. (1995a) Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives, Biotechnol. Bioeng. 47, 407–419.

    Article  CAS  Google Scholar 

  • Michaels, J.D., Nowark, J.E., Mallik, A.K., Koczo, K., Wasan, D.T. and Papoutsakis, E.T. (1995b) Interfacial properties of cell culture media with cell-protecting additives, Biotechnol. Bioeng. 47, 420–430.

    Article  CAS  Google Scholar 

  • Middelberg, A.P.J. (1993) Extension of the wall-strength model for high pressure homogenisation to multiple passes, Trans. IChemE 71 (C), 215–219.

    CAS  Google Scholar 

  • Middelberg, A.P.J. (1995) Process-scale disruption of microorganisms, Biotechnol. Advances 13, 491–551.

    Article  CAS  Google Scholar 

  • Middelberg, A.P.J., O’Neill, K. and Bogle, I.D.L. (1992a) A new model for the disruption of Eschetichia coli by high-pressure homogenisation. I. Model development and verification, Trans. IChemE 70 (C) 205–212.

    CAS  Google Scholar 

  • Middelberg, A.P.J., O’Neill, B.K. and Bogle, I.D.L. (1992b) A new model for the disruption of Eschelichia coli by high-pressure homogenisation. II. A correlation for the effective cell strength, Trans. IChemE 70 (C) 213–218.

    CAS  Google Scholar 

  • Moreira, J.L., Cruz, P.E. Santan, P.C., Aunins, J.G. and Corrondo, M.J.T. (1995) Formation and disruption of animal cells aggregates in stirred vessels: mechanisms and kinetic studies, Chem. Eng. Sci., 50 27472764.

    Google Scholar 

  • Namdev, P.K. and Dunlop, E.H. (1995) Shear sensitivity of plant cells in suspension, Appl. Biochem. Biotechnol. 54, 109–131.

    Article  CAS  Google Scholar 

  • Ng, Y.C., Berry, J.M. and Butler, M. (1996) Optimisation of physical parameters for cell attachment and growth on microporous microcarriers, Biotechnol. Bioeng. 50, 627–635.

    Article  CAS  Google Scholar 

  • Papoutsakis, E.I. (1991) Fluid-mechanical damage of animal cells in bioreactors, TIBTECH 9, 427–437.

    Article  CAS  Google Scholar 

  • Ranjan, V., Waterbury, R., Xiao, Z. and Diamond, S.L. (1996) Fluid shear stress induction of the transcriptional activator c-fos in human and bovine endothelial cells, HeLa, and Chinese Hamster Ovary cells, Biotechnol. Bioeng. 49. 383–390.

    Article  CAS  Google Scholar 

  • Roberts, A.D., Zhang, Z., Young, T.W., and Thomas, C.R. (1994) Measurement of the bursting strength of yeast cells by micromanipulation, The 1994 IChemE Research Event, University College London, 5–6th January 1994, 73–75. IChemE, Rugby, UK. ISBN 0 85295 320 8.

    Google Scholar 

  • Siddiqi, S.F., Titchener-Hooker, N.J. and Ayazi Shamlou, P. (1996) Simulation of particle-size distribution changes occurring during high-pressure disruption of Bakers’ yeast, Biotechnol. Bioeng. 50, 145–150.

    Article  CAS  Google Scholar 

  • Sisk, M., Zhang, Z., McFarlane, C. and Thomas, C. R. (1997), Micromanipulation of latex aggregates, The 1997 IChemE Research Event, Vol. 2, University of Nottingham, 8–9 April 1997, 961–964. IChemE, Rugby, UK. ISBN 0 85295 389 5.

    Google Scholar 

  • Sonntag, R.C. and Russel, W.B. (1987) Structure and break up of flocs subjected to fluid stresses, II. Theory, J. Coll. Interface Sci. 115, 378–389.

    Article  CAS  Google Scholar 

  • Srinorakutara, T., Zhang, Z. and Thomas, C.R. (1995) Mechanical properties of yeast, Proceedings of Chemeca ‘85 (the 23rd Australian Chemical Engineering Conference, Adelaide, Australia, 24–27th September 1995 ) 3, 45–49.

    Google Scholar 

  • Srinorakutara, T., Zhang, Z. and Thomas, C.R. (1996) Osmolarity effect on yeast cell strength and size, The 1996 IChemE Research Event, University of Leeds, 2nd-3rd April, 1996, 151–153. IChemE, Rugby, UK. ISBN 0 85295 347 7.

    Google Scholar 

  • Thomas, C.R. (1993) Shear effects on cells in bioreactors, Chapter 6 in Shamlou, P.A. (ed.), “Processing of Solid Liquid Suspensions”, 158–191. Butterworths.

    Google Scholar 

  • Thomas, C.R., Al-Rubeai, M. and Zhang, Z. (1994) Prediction of mechanical damage to animal cells in turbulence, Cytotechnol. 15, 329–335.

    Article  CAS  Google Scholar 

  • Thomas, C.R. and Dunnill, P. (1979) Action of shear on enzymes: studies with catalase and urease, Biotechnol. Bioeng. 21, 2279–2302.

    Article  CAS  Google Scholar 

  • Thomas, C.R., Nienow, A.W. and Dunnill, P. (1979) Action of shear on enzymes: studies with alcohol dehydrogenase, Biotechnol. Bioeng. 21, 2263–2278.

    Article  CAS  Google Scholar 

  • Toma, M.K., Rukliska, M.P., Vanags, J.J., Zeltina, M.O., Leite, M.P., Galinina, N.I., Viesturs, U.E. and Tengerdy, R.P. (1991) Inhibition of microbial growth and metabolism by excess turbulence, Biotechnol. Bioeng. 38, 552–556.

    Article  CAS  Google Scholar 

  • Tucker, K.G., Kelly, T., Delgrazia, P. and Thomas, C.R. (1992) Fully automatic measurement of mycelial morphology by image analysis, Biotechnol. Prog. 8, 353–359.

    Article  CAS  Google Scholar 

  • van der Pol, L.A., Paijens, I. and Tramper, J (1995) Dextran as protectant against damage caused by sparging for hybridoma cells in a bubble column, J. Biotechnol. 43, 103–110.

    Article  Google Scholar 

  • Venkat, R.V. Stock, L.R. and Chalmers, J.J. (1996) Study of hydrodynamics in microcarrier culture spinner vessels: a particle tracking velocimetry approach, Biotechnol. Bioeng. 49, 456–466.

    CAS  Google Scholar 

  • Virkar, P.D., Narendranathan, T.J., Hoare, M., Dunnill, P. (1981) Studies of the effects of shear on globular proteins: extension to high shear fields and to pumps, Biotechnol. Bioeng. 23, 425–429.

    Article  CAS  Google Scholar 

  • Vunjak-Novakovic, G., Freed, L.E., Biron, R.J. and Langer, R. (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage, AIChE J. 42, 850–860.

    Article  CAS  Google Scholar 

  • Wu, J. (1995) Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives, J. Biotechnol. 43, 81–94.

    Article  CAS  Google Scholar 

  • Wu, J., Daugulis, A.J., Faulkner, P. and Goosen, M.F.A. (1995), Protective effects of polymer additives on animal-cells exposed to rapidly falling liquid-films, Biotechnol. Prog. 11, 127–132.

    Article  CAS  Google Scholar 

  • Wu, J. and Goosen, M.F.A. (1995) Evaluation of the killing volume of gas bubbles in sparged animal cells culture reactors, Enz. Microbial Technol. 17, 241–247.

    Article  CAS  Google Scholar 

  • Zhang, Z., Al-Rubeai, M. and Thomas C.R. (1992a) Mechanical properties of hybridoma cells in batch culture, Biotechnol. Lett 14, 11–16.

    Article  Google Scholar 

  • Zhang, Z., Al-Rubeai, M. and Thomas, C.R. (1992b), The effect of Pluronic F68 on the mechanical properties of mammalian, cells. Enz. Microbial Technol. 14, 980–983.

    Article  CAS  Google Scholar 

  • Zhang, Z., Al-Rubeai, M. and. Thomas, C.R. (1993) Comparison of the fragilities of several animal cell lines, Biotechnol. Techn. 7, 177–182.

    Google Scholar 

  • Zhang, Z., Al-Rubeai, M. and Thomas, C.R. (1995a) Preliminary modelling of animal cell disruption in a closed stirred tank, The 1995 IChemE Research Event, University of Edinburgh, 5–6th January 1995, 1088–1090. IChemE, Rugby, UK. ISBN 0 85295 359 3.

    Google Scholar 

  • Zhang, Z., Al-Rubeai, M. and Thomas C.R. (1995b) Estimation of disruption of animal cells by turbulent capillary flow, Biotechnol. Bioeng. 42, 987–993.

    Article  Google Scholar 

  • Zhang, Z., Chisti, Y and Moo-Young, M (1995) Effects of the hydrodynamic environment and shear protectants on survival of erythrocytes in suspension, J. Biotechnol. 43, 33–40.

    Article  CAS  Google Scholar 

  • Zhang, Z., Ferenczi, M.A., Lush, A.C. and Thomas, C.R. (1991) A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl. Microbiol. Biotechnol 36, 208–210.

    Article  CAS  Google Scholar 

  • Zhang, Z., Ferenczi, M.A. and Thomas C.R. (1992) A micromanipulation technique with theoretical cell model for determining mechanical properties of single mammalian cells, Chem. Eng. Sci. 47, 1347–1354.

    Article  Google Scholar 

  • Zhang, Z., Singh, R., Welsh, J.P., Thomas, C.R. and Al-Rubeai, M. (1995), Mechanical properties of apoptotic and necrotic cells of hybridoma and bc1–2 transfected Burkitt lymphoma cell lines, The 7th European Congress on Biotechnology, Nice, France.

    Google Scholar 

  • Zhang, Z. and Thomas, C.R. (1993) Micromanipulation: A new approach to studying animal cell damage in bioreactors, Genetic Engr. and Biotechnol. 13, 19–29.

    CAS  Google Scholar 

  • Zhang, Z. and Thomas, C.R. (1995) Direct cell-eddy interactions in turbulent flows, Proceedings of Chemeca ‘85 (the 23rd Australian Chemical Engineering Conference, Adelaide, Australia, 24–27th September 1995 ) 3, 98–103.

    Google Scholar 

  • Zhang, Z and Thomas C.R. (1996) Eddy number distribution in isotropic turbulence and its application for estimating mass transfer coefficients, Chem. Eng. Comm. 140, 207–217.

    Article  CAS  Google Scholar 

  • Zhou, G. and Kresta, S.M. (1996) Impact of tank geometry on the maximum turbulence energy disruption rate for impellers, AIChE J. 42, 2476–2490.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thomas, C.R., Zhang, Z. (1998). The Effect of Hydrodynamics on Biological Materials. In: Galindo, E., Ramírez, O.T. (eds) Advances in Bioprocess Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0643-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0643-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4987-2

  • Online ISBN: 978-94-017-0643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics