Strategies for the Selection of Mold Strains Geared to Produce Enzymes on Solid Substrates



This paper deals with the problem of outlying a strategy for the selection of mold strains adapted to the production and excretion of enzymes by solid—substrate fermentation (SSF), as compared to the conventional technique of submerged fermentation (SmF). Such strategy is based on the analysis of the physiological differences between SSF and SmF in relation to repression-induction patterns, water activity requirements, excretion and enzyme productivity. The strategy used, so far, is based on the selection of Aspergillus niger mutants having a phenotype based on 2-deoxy glucose resistance together with adaptation to low levels of water activity. Recent work is reviewed in terms of the potential for developing industrial fermentation processes using those new strains together with some downstream considerations (water saving and solid waste recycling).


Aspergillus Niger Water Activity Sugar Cane Bagasse Solid State Fermentation Submerged Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodie, E.A., Gale, L., Armstrong, G.I., and Dunn-Coleman, N.S.: Strain improvement of chymosin producing strains of Aspergillus niger var. awamori using parasexual recombination. Enzyme Microb. Technol. 16 (1994), 376–382.CrossRefGoogle Scholar
  2. 2.
    Takamine, J.: Enzymes of Aspergillus oryzae and the application of its amyloclastic enzyme to the fermentation industry. Ind. Eng. Chem. 6 (1914), 824–828.CrossRefGoogle Scholar
  3. 3.
    Underkofler, L.A., Barton, R.P., Rennert, S S.: Production of microbial enzymes and their applications. Appl. Miccrobiol. 6 (1958), 212–221.Google Scholar
  4. 4.
    Raimbault, M. Croissance de champignons filamenteux en milieu solide. Thèse de doctorat dÉtat. Université Paul Sabatier. Tolouse, France. Publications del ORSTOM. 127 (1981), 1–91.Google Scholar
  5. 5.
    Aidoo, K.E., Hendry, R., and Wood, J.B.: Solid-substrate fermentations. Adv. Appl. Microbiol. 28 (1982), 201–237.CrossRefGoogle Scholar
  6. 6.
    Grajek, W., and Gervais, P.: Influence of water activity on the enzyme biosinthesis and enzyme activities produced by Trichoderma viride TS in solid state fermentation. Enzyme Microbiol. Technol. 9 (1987), 658–662.CrossRefGoogle Scholar
  7. 7.
    Oriol, E., Raimbault M., Roussos S., and Viniegra-Gonzalez G.: Water and water activity in the solid state fermentation of cassava starch by Aspergillus niger. Appl. Microbiol. Biotechnol. 27. (1988a), 498–503.Google Scholar
  8. 8.
    Pandey, A.: Recent process developments in solid state fermentation. Process Biochemistry. 27 (1992), 109–117.CrossRefGoogle Scholar
  9. 9.
    Antier, P., A., Minjares and G. Viniegra: Pectinase-hyperproducing mutants of Aspergillus niger C28B25 for solid state fermentation on coffee pulp. Enzyme Microb. Technol. 15 (1993a), 254–260.CrossRefGoogle Scholar
  10. 10.
    Acufla-Arguelles, M., Gutiérrez-Rojas, M., Viniegra-Gonzalez, G., Favela-Torres, E.: Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid state fermentation. Appl. Microbiol. Biotechnol. 43 (1995), 1–6.CrossRefGoogle Scholar
  11. 11.
    Huerta, S., Favela, E., López-Ulibarri, R., Fonseca, A., and Viniegra-González, G., Gutiérrez, M.: Absorbed substrate fermentation for pectinase production with Aspergillus niger. Biotechnol. Techs. 8 (1994), 837–842.CrossRefGoogle Scholar
  12. 12.
    Shankaranand, V., Ramesh, M.V. and Lonsane, B.K.: Idiosyncrasies of solid state fermentation systems in the biosynthesis of metabolites by some bacterial and fungal cultures. Process Biochem. 25 (1992), 33–36CrossRefGoogle Scholar
  13. 13.
    Aguilar, G., and Huitrón, C.: Application of fed-batch cultures in the production of extracellular pectinases by Aspergillus sp. Enzyne Microb. Technol. 9 (1986), 541–545.CrossRefGoogle Scholar
  14. 14.
    Maldonado, M. C., Stresser A., and Callieri, D.: Regulatory aspects of the synthesis of polygalacturonases and pectinesterases by Aspergillus niger sp. Sciences des aliments 9 (1989), 101–110.Google Scholar
  15. 15.
    Ramesh, M.V., and Lonsane, B.K.: Regulation of alpha-amylase production in Bacillus licheniformis M27 by enzyme end-products in submerged fermentation and its overcoming in solid state fermentation system. Biotechnol. Leu. 13 (1991), 355–360.CrossRefGoogle Scholar
  16. 16.
    Solis-Pereira, S., Favela-Torres, E., Viniegra-Gonzalez, G., and Gutiérrez-Rojas, M.: Effects of different carbon sources on the synthesis of pectinase by Aspergillus niger in submerged and solid state fermentation. Appl. Microbiol. Biotechnol. 39 (1993), 36–41.Google Scholar
  17. 17.
    Ghildyal, N.P., Lonsane, B.K:, Sreekantiah, K.R., Sreenivasa-Murthy, V.: Economics of submerged and solid state fermentations for the production of amyloglucosidase. J. Food Sci. Technol. 22 (1985), 171176.Google Scholar
  18. 18.
    Ghildyal, N.P., Ramakrishna, S.V., Nirmaia Devi, P., Lonsane, B.K., Ashtana, H.N.: Large scale production of pectolytic enzyme by solid state fermentation. J. Food Sci. Technol. 18 (1985), 244–257.Google Scholar
  19. 19.
    Jaleel, S.A., Ghildyal, N.P., Sreekantiah, K.R., Sreenivasa Murthy, V. Production and scale-up of fungal amylase by solid statefermentation. Paper presented at 19 th . Annual Conference, Association of Microbiologists, India, Baroda (as cited in 17 ) (1978).Google Scholar
  20. 20.
    López-Isunza, F. and Viniegra-Gonzalez, G.: Mass transfer and growth kinetics in filamentous fungi. Chem. Eng. Sci. (in press).Google Scholar
  21. 21.
    Aysnley, M., Ward, A.C., and Wright, A.R.: A mathematical model for the growth of mycelial fungi in submerged culture. Biotechnol. Bioeng. 35 (1990), 820–830.CrossRefGoogle Scholar
  22. 22.
    Bartnicki-García, S.: Fundamental aspects of hyphal morphogenesis, in Ashworths, J.M. and Smith J.E. (eds.), Microbial differentiation, Cambridge University Press, Cambridge, U.K (1973), 245–267.Google Scholar
  23. 23.
    Bartnicki-García, S., Hergert, F., and Gierz, G.: Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153 (1989), 46–57.CrossRefGoogle Scholar
  24. 24.
    Robson, G.D, Bell, S.D., Kuhn, P.J., and Trinci, A.P.J.: Glucose and penicillin concentrations in agar medium below fungal colonies. J. Gen. Microbiol. 133 (1987), 361–367.Google Scholar
  25. 25.
    Gergiou, G., and Shuler, M.L.: A computer model for the growth and differentiation of a fungal colony on solid substrate. Biotechnol. Bioeng. 28 (1989), 495–416.Google Scholar
  26. 26.
    Narahara, H. Koyama, Y., Yoshida, T., Atthasampunna, P, Taguchi, H.: Control of water content in a solid-state culture of Aspergillus oryzae. J. Ferment. Technol. 62 (1984), 453–459.Google Scholar
  27. 27.
    Oriol, E., Schettino, B., Viniegra-Gonzalez, G. and Raimbault, M.: Solid state culture of Aspergillus in support. J. Fermentation Tech. 66 (1988b), 57–62.CrossRefGoogle Scholar
  28. 28.
    Sarrette, M., Nout, M.J.R., Gervais, P., and Rombouts, F.M.: Effect of water activity on the production and activity of Rhizopus oligosporus polysaccharidases. Appl. Microbiol. Biotechnol. 37 (1992), 420–425.Google Scholar
  29. 29.
    Acura-Arguelles, M., Gutiérrez-Rojas, M., Viniegra-Gonzalez, G., Favela-Torres, E.: Effect of water activity on exo-pectinase production by Aspergillus niger CH4 on solid state fermentation. Biotechnol. Lett. 16 (1) (1994), 23–28.CrossRefGoogle Scholar
  30. 30.
    Davis, L.L., and Baudoin B.A.M.: Effect of osmotic potential on synthesis and secretion of polygalacturonase and cellulase by Geotrichum candidum. Can. J. Microbiol. 33 (1987), 138–141.CrossRefGoogle Scholar
  31. 31.
    Antier, Ph., Minjares, A., Roussos, S., and Viniegra-Gonzalez, G.: New approach for selecting pectinase producing mutants of Aspergillus niger well adapted to solid state fermentation. Biotechnol. Adv. 11 (1993b), 429–440.CrossRefGoogle Scholar
  32. 32.
    Boccas, F., Roussos, S., Gutiérrez-Rojas, M., and Viniegra-Gonzalez, G.: Production of pectinase from coffee pulp in solid state fermentation system: selection of wild fungal isolates of high potency by a simple three step screening technique. J. Food. Sci. Technol. 31 (1) (1994), 22–26.Google Scholar
  33. 33.
    Loera-Corral, O.: Estudios genéticos de las mutantes de Aspergillus niger C28B25 sobre productoras de pectinasas en sustratos ltquidos y sólidos. M. Sc. thesis in Biotechnology. Universidad Autonoma Metropolitana, Iztapalapa, D.F. (Méx.) (1994).Google Scholar
  34. 34.
    Allen, K.E., McNally, M.T., Lowendorf, H.S., Slayman, C.W., and Free, S.J.: Deoxyglucose-resistant mutants of Neurospora crassa: isolation, mapping, and biochemical characterization.. J. Bacteriol. 171 (1989), 53–58.Google Scholar
  35. 35.
    Alazard, D., Raimbault, M.: Comparative study of amylolytic enzyme production by Aspergillus niger in liquid and solid state cultivation. J. Appl. Microbiol. Biotechnol. 12 (1981), 113–117.CrossRefGoogle Scholar
  36. 36.
    Minjares-Carranco, A., Trejo-Aguilar, B.A., Aguilar, G., and and Viniegra-Gonzalez, G.: Physiological comparisons between pectinase-producing mutants of Aspergillus niger adapted either to solid-state fermentation or submerged fermentation. Enzyme Mycrob. Technol. 21 (1997), 25–31.CrossRefGoogle Scholar
  37. 37.
    Barthomeuf, Ch., Regerat, F., and Pourrat, H.: Improvement in tannase recovery using enzymatic disruption of mycelium in combination with reverse mycellar enzyme extraction. Biotechnol. Techn. 8 (1994), 137–142.CrossRefGoogle Scholar
  38. 38.
    Lekha, P.K., and Lonsane, B.K.: Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus niger PKL 104 in solid state, liquid surface and submerged fermentations. Proc. Biochem. 29 (1994), 497–503.CrossRefGoogle Scholar
  39. 39.
    Garda-Pena, E.I.: Producción, purificaciòn y caracterización de tanasa producida por Aspergillus niger, en fermentacion en medio solido M. Sc. thesis (Biotechnology). Universidad Autónoma Metropolitana. Iztapalapa, D.F. (Méx.) (1995).Google Scholar
  40. 40.
    Hesseltine, C.W.: Solid state fermentation. Biotechnol Bioeng. 13 (1972), 517–532.CrossRefGoogle Scholar
  41. 41.
    Cahn, F.J.: Organic acids by fermentation. Canad. Pat$1306,081. (1930) (as cited in C.A. 24: 2831 )Google Scholar
  42. 42.
    Lakshminarayana, K., Chudhary, K., Ethiraj, S., and Tauro, P.: A solid state fermentation method for citric acid production using sugar cane bagasse. Biotechnol. Bioeng. 178 (1975), 291–293.CrossRefGoogle Scholar
  43. Auria, R., Morales, M., Villegas, E., Revah, S.: Influence of mold growth on the pressure drop in aereated solid state fermenters. Biotechnol. Bioeng. 41 (1993) 1007–1013.Google Scholar
  44. 44.
    Laukevics, J.J., Apsite, A.F., Viesturs, H.E., and Tengerdy, R.P.: Steric hindrance of growth of filamentous fungi in solid substrate fermentation of wheat straw. Biotechnol. Bioeng. 27 (1984), 16871691.Google Scholar
  45. 45.
    Zhu Y., Smits J.P., Knol W., and Bol J.: A novel solid state fermentation system using polyurethane foam as inert carrier. Biotechnol. Leu. 16 (6) (1994), 643–648.CrossRefGoogle Scholar
  46. 46.
    Peberdy J.F.: Protein secretion in filamentous fungi: trying to understand a highly productive black box. Trends in Biotechnology 12 (2) (1994), 50–57.CrossRefGoogle Scholar
  47. 47.
    Campos M. R., Herrera-Saldava R., Viniegra G. G., and Diaz C. M.: The effect of Aspergillus niger and Aspergillus oryzae (Amaferm) as probiotics on in situ digestability of a high fiber diet J. Dairy Sci. 73 (Suppl. 1) (1990), 133 (Abstract).Google Scholar
  48. 48.
    Campos-Montiel, R.G., and Viniegra-Gonzalez, G.: Microbial assay of fungal compounds that stimulate the growth of a consortium of anaerobic cellulolytic bacteria. Biotechnol. Techn. 9 (1995), 65–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Departamento de BiotecnologíaUniversidad Autónoma MetropolitanaIztapalapaMexico

Personalised recommendations