Advertisement

On-Line Monitoring of Intracellular Properties and Its Use in Bioreactor Operation

Chapter

Abstract

Biotechnology products ed by recombinant organisms frequently require optimization of bioreactor operation. Traditionally, methods of optimization involved manipulation of cultivation and environmental variables such as temperature, pH and dissolved oxygen concentration. However, methods of optimization based on the ‘metabolic state’ of cells in the bioreactor may be more desirable than the methods based on environmental variables. ‘Metabolic state’ is used here to refer to the internal state of cells. Examples of metabolic states include aerobic and anaerobic, oxidative and reductive, ATP-rich and ATP-poor, high and low intracellular pH and others. The effort to develop operating strategies based on ‘metabolic state’ have been hampered due to lack of suitable measurement of ‘metabolic state’ itself. In this paper, we review the principle of measuring on-line intracellular pH and its use in developing cultivation strategies.

Keywords

Ethanol Yield Oxygen Uptake Rate Glucose Addition Clostridium Acetobutylicum Glucose Uptake Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asali, E. C., Humphrey, A. E., Mutharasan, R.: Use of NAD(P)H Fluorescence for Monitoring the Response of Starved Cells of Catharanthus roseus in suspension to Metabolic Perturbations. J. Biotechnol. 23 (1992), 83 - 94.CrossRefGoogle Scholar
  2. 2.
    Bright, G. R., Fisher, G. W., Rogowska, J., Taylor, D. L.: Fluorescence Ratio Imaging Microscopy: Temporal and Spatial Measurements of Cytoplasmic pH. J. Biol. Chem. 259 (1984), 7563 - 7569.Google Scholar
  3. 3.
    Busa, W. B., Nuccitelli, R. 1984Metabolic Regulation via Intracellular pH. Am. J. Physiol. 246 (1984), R409 - R438.Google Scholar
  4. 4.
    Davis, M. H., Altschuld, R. A., Jung, D. W., Brierley, G. P.: Estimation of Intramitochondrial Ca and pH by Fura-2 and 2,7 Biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) Fluorescence. Biochem. Biophys. Res. Comm. 149 (1987), 40 - 45.CrossRefGoogle Scholar
  5. 5.
    Deamer, D. W., Prince, R. C., Crofts, A. R.: The Response of Fluorescent Amines to pH Gradients Across Liposome Membranes. Biochim. Biophys. Acta. 461 (1977), 323 - 335.Google Scholar
  6. 6.
    Den Hollander, J. A., Ugurbil, K., Brown, T. R., Schulman, R. G.: Phosphorus-31 Nuclear Magnetic Resonance Studies of the Effect of Oxygen upon Glycolysis in Yeast. Biochemistry. 20 (1981), 58715880.Google Scholar
  7. 7.
    De Young, M., Nemeth, E. F., Scarpa, A.: Measurement of the Internal pH of Mast Cell Granules Using Microvolumetric Fluorescence and Isotopic Techniques. Arch. Biochem. Biophys. 254 (1987), 222233.Google Scholar
  8. 8.
    Duysens, L. N. M., Amesz, J.: Fluorescence Spectrophotometry of Reduced Phosphopyridine Nucleotide in Intact Cells in the Near-Ultraviolet and Visible Region. Biochim. Biophys. Acta. 24 (1957), 19 - 26.CrossRefGoogle Scholar
  9. 9.
    Endo, T., Tokuda, H., Yagita, K., Koyama, T.: Effects of Extracellular Potassium on Acid Release and Motility Initiation in Toxoplasma gondii. J. Protozool. 34 (1987), 291 - 295.Google Scholar
  10. 10.
    Fechheimer, M., Denny, C., Murphy, R. F., Taylor, D. L.: Measurement of Cytoplasmic pH in Dictyostelium Discoideum by using a New Method for Introducing Macromolecules Into Living Cells. Eur. J. Cell Biol. 40 (1986), 242 - 247.Google Scholar
  11. 11.
    Gerson, D. F.: Determination of Intracellular pH Changes in Lymphocytes with 4- Methylumbelliferone by Flow Cytometry. 125 - 133 In: R. Nuccitelli and D. W. Deamer (ed.), Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, Alan R. Liss Inc., New York, 1982.Google Scholar
  12. 12.
    Grinstein, S., Furuya, W.: Intracellular Distribution of Acridine Derivatives in Platelets and their Suitability for Cytoplasmic pH Measurements. Biochim. Biophys. Acta. 803 (1984), 221 - 228.CrossRefGoogle Scholar
  13. 13.
    Harrison, D. E. F., Chance, B.: Fluorimetric Technique for Monitoring Changes in the Level of Reduced Nicotinamide Nucleotides in Continuous Cultures of Microorganisms. Appl. Microbiol. 19 (1970), 446450.Google Scholar
  14. 14.
    Horne, W. C., Norman, N. E., Schwartz, D. B., Simons, E. R.: Changes in Cytoplasmic pH and in Membrane Potential in Thrombin-Stimulated Human Platelets. Eur. J. Biochem. 120 (1981), 295 - 302.CrossRefGoogle Scholar
  15. 15.
    Haworth, R. S., Lemire, B. D., Crandall, D., Cragoe Jr., E. G., Fliegel, L.: Characterization of Proton Fluxes Across the Cytoplasmic Membrane of the Yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1098 (1991), 79-89.Google Scholar
  16. 16.
    Kurtz, I., Balaban, R. S.: Fluorescence Emission Spectroscopy of 1, 4 - Dihydroxyphalonitrile. A Method for Determining Intracellular pH in Cultured Cells. Biophys. J. 48 (1985), 499 - 508.Google Scholar
  17. 17.
    Lee, H. C., Forte, J. G., Epel, D.: The Use of Florescent Amines for the Measurement of pHi: Applications in Liposomes, Gastric Microsomes, and Sea Urchin Gametes. 135 - 160 In: R. Nuccitelli and D. W. Deamer (ed.), Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, Alan R. Liss Inc., New York. (1982).Google Scholar
  18. 18.
    Lee, H. C., Johnson, C., Epel, D.: Changes in Internal pH Associated with Initiation of Motility and Acrosome Reaction of Sea Urchin Sperm. Dev. Biol. 95 (1983), 31 - 45.CrossRefGoogle Scholar
  19. 19.
    Meyer, C., Beyeler, W.: Control Strategies for Continuous Bioprocesses Based on Biological Activities. Biotechnol. Bioeng. 26 (1984), 916 - 925.CrossRefGoogle Scholar
  20. 20.
    Moolenaar, W. H., Tertoolen, L. G. J., DeLaat, S. W.: The Regulation of Cytoplasmic pH in Human Fibroblasts. J. Biol. Chem. 259 (1984), 7563 - 7569.Google Scholar
  21. 21.
    Moore, R. D., Fidelman, M. L., Hansen, J. C., Otis, J. N.: Role of Intracellular Function in Insulin Action. 385 - 416 In: R. Nuccitelli and D. W. Deamer (ed.), Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, Alan R. Liss Inc., New York, 1982.Google Scholar
  22. 22.
    Nuccitelli, R., Heiple, J. M.: Summary of the Evidence and Discussion Concerning the Involvement of pHi in the Control of Cellular Functions. 567 - 586 In: R. Nuccitelli and D. W. Deamer (ed.), Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, Alan R. Liss Inc., New York, 1982.Google Scholar
  23. 23.
    Purwin, C., Nicolay, K., Scheffers, W. A., Holzer, H.: Mechanism of Control of Adenylate Cyclase Activity in Yeast by Fermentable Sugars and Carbonyl Cyanide m-Chlorophenylhydrazone. J. Biol. Chem. 261 (1986), 8744 - 8749.Google Scholar
  24. 24.
    Rao, G., Mutharasan, R.: NADH Levels and Solventogenesis in Continuous Cultures of Clostridium acetobutylicum: New Insights Through Culture Fluorescence. App. Microbiol. Biotech. 30 (1989), 5966.Google Scholar
  25. 25.
    Ristroph, D. L., Watteeuw, C. M., Armiger, W. B., Humphrey, A. E.: Experience in the Use of Culture Fluorescence for Monitoring Fermentations. J. Ferment. Technol. 55 (1977), 599 - 608.Google Scholar
  26. 26.
    Roos, A., Keifer, D. W.: Estimation of Intracellular pH from Distribution of Weak Electrolytes. 55 - 59 In: R. Nuccitelli and D. W. Deamer (ed.), Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, Alan R. Liss Inc., New York, 1982.Google Scholar
  27. 27.
    Satoh, M., Nanti, H., Takeshige, K., Minakami, S.: Pertussis Toxin Inhibits Intracellular pH Changes in Human Neutrophils Stimulated by N-Formyl-Methionyl-Leucyl-Phenylalanine. Biochem. Biophys. Res. Comm. 131 (1985), 64 - 69.CrossRefGoogle Scholar
  28. 28.
    Schuldiner, S., Rottenberg, H., Avron, M.: Determination of ApH in Chloroplasts. 2. Fluorescent Amines as a Probe for the Determination of ApH in Chloroplasts. Eur. J. Biochem. 25 (1972), 64 - 70.CrossRefGoogle Scholar
  29. 29.
    Shanks, J. V., Bailey, J.: Comparison of Wild Type and Regl Mutant Saccharomyces Cerevisiae Metabolic Levels During Glucose and Galactose Metabolism Using 31P NMR. Biotechnol. Bioeng. 35 (1990), 395 - 407.CrossRefGoogle Scholar
  30. 30.
    Shimada, T., Hoshi, T.: Role of Na+/H+ Antiport in Intracellular pH Regulation by Rabbit Enterocytes. Biochim. Biophys. Acta. 901 (1987), 265 - 272.CrossRefGoogle Scholar
  31. 31.
    Siano, S. A., Mutharasan, R.: NADH and Ravin Fluorescence Responses of Starved Yeast Cultures to Substrate Perturbations. Biotechnol. Bioeng. 34 (1989), 660 - 670.CrossRefGoogle Scholar
  32. 32.
    Siano, S. A., Mutharasan, R.: NADH and Oxygen Uptake Responses of Hybridoma Cultures to Substrate Pulse and Step Changes. Biotechnol. Bioeng. 37 (1991), 141 - 149.CrossRefGoogle Scholar
  33. 33.
    Sureshkumar, G. K., Mutharasan, R.: Intracellular pH-Based Controlled Cultivation of Yeast Cells: I. Measurement Methodology. Biotech. and Bioengineering. 41 (1993), 118 - 128.CrossRefGoogle Scholar
  34. 34.
    Slavik, J.: Intracellular pH of Yeast Cells Measured with Fluorescent Probes. FEBS Lett. 140 (1982), 22 - 26.CrossRefGoogle Scholar
  35. 35.
    Srinivas, S. P.: Representation of Physiological States in the Modeling of ABE Fermentation and of Culture Fluorescence, Ph. D. thesis, Drexel University, Philadelphia, PA, USA, 1987.Google Scholar
  36. 36.
    Srinivas, S. P., Mutharasan, R.: Culture Fluorescence Characteristics and its Metabolic Significance in Batch Cultures of Clostridium Acetobutylicum. Biotechnol. Lett. 9 (1987), 139 - 144.CrossRefGoogle Scholar
  37. 37.
    Srinivas, S. P., Mutharasan, R.: Inner Filter Effects and Their Intreferences in the Interpretation of Culture Fluorescence. Biotechnol. Bioeng. 30 (1987), 769 - 775.CrossRefGoogle Scholar
  38. 38.
    Sureshkumar, G. K., Mutharasan, R.: Intracellular pH-Based Controlled Cultivation of Yeast Cells: II. Cultivation Methodology. Biotech. and Bioengineering. 42 (1993), 295 - 302.CrossRefGoogle Scholar
  39. 39.
    Stryer, L.: Biochemistry. 3rd edition. W. H. Freeman and Co., New York, 1988.Google Scholar
  40. 40.
    Tanasugam, L., McNeil, P., Reynolds, G. T., Taylor, D. L.: Microspectrofluorometry by Digital Image Processing: Measurement of Cytoplasmic pH. J. Cell Biol. 98 (1984), 717 - 724.CrossRefGoogle Scholar
  41. 41.
    Taylor, D. L., Amato, P. A., McNeil, P. L., Luby-Phelps, L., Tanasugarn, L.: Spatial and Temporal Dynamics of Specific Molecules and Ions in Living Cells. 347-376 In: D. L. Taylor et al(ed.), Applications of Fluorescence in Biomedical Sciences, Alan R. Liss, Inc., New York, 1986.Google Scholar
  42. 42.
    Trivedi, B., Danforth, W. H.: Effect of pH on the Kinetics of Frog Muscle Phosphofructokinase. J. Biol. Chem. 241 (1966), 4110 - 4114.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Drexel UniversityPhiladelphiaUSA

Personalised recommendations