Advertisement

An Assessment of Droplet-Air Contact and Spray Drying Performance in Bioprocess Engineering

Chapter

Abstract

Spray drying is a fascinating unit operation that involves several complex stages and presents serious difficulties when trying to model it on a fundamental basis. Difficulties arise from the fact that existing relationships can not take into account all the variables involved in the process. Results derived from the application of reported models give only an order of magnitude estimate of design and processing parameters. Besides, the particles undertaking drying do not have uniform size and shape, and these properties vary along the process, giving place to a very complex multi-phase mixture of gas, solids, liquid and rubbery materials.

Keywords

BIOPROCESS Engineer Spray Drier Shrink Core Model Pressure Nozzle Fall Rate Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, C.A. and Ziegler, G.R. (1994) The physical and microscopic characterization of dry whole milk with altered lactose content 2. Effect of lactose crystallization, Journal of Dairy Science 77 (5), 1198–1204.CrossRefGoogle Scholar
  2. Allen, R.M. and Bakker, H.H.C. (1994) Spray dryer control-based online particle size analysis. Chemical Engineering Research and Design. 72, A2, 251–254.Google Scholar
  3. Aronson, M.P. and Tsaur, L. (1993) Water soluble polymers in latex form, in Blanchard, J and Lillford, P. J. The Glassy State in Foods. Nottingham University PressGoogle Scholar
  4. Azuara, E., Gutiérrez, G., Beristain, I., Hernandez, H. and Dorantes, L. (1997) Kinetic studies on the stages of mass transfer during osmotic dehydration of apples, in R. Jowitt (ed.), Engineering and Food at ICFE-7, Sheffield Academic Press, Sheffield. pp SG-SG4.Google Scholar
  5. Bitz, C. and Doelker, E. (1996) Studies on preparation methods on residual solvents in biodegradable microspheres, International Journal of Pharmaceutics 131 (2), 171–181.Google Scholar
  6. Chan, H.K., Clark, A., Gonda, I., Mumenthaler, M and Hsu, C. (1997) Spray dried powders and powder blends of recombinant human deoxyribonuclease (rhDNase) for aerosol delivery, Pharmaceutical Research 14 (4), 431–437.CrossRefGoogle Scholar
  7. Charlesworth, D.H. and Marshall, W.R. (1960) Evaporation from drops containing dissolved solids, Part I, J. AIChE. 6 (1) 9.CrossRefGoogle Scholar
  8. Chawia, J.M. (1994) Effect of the droplet agglomeration on the design of spray dryer towers, Drying Technology 12 (6) 1357–1365.CrossRefGoogle Scholar
  9. Chen, X.D. (1994) Towards a comprehensive model-based control of milk drying processes, Drying Technology 12 (5), 1105–1130.CrossRefGoogle Scholar
  10. Faldt, P. and Bergenstahl, B. (1995). Fat encapsulation in spray-dried food powders, Journal of the American Oil Chemists Society 72 (2), 171–176.CrossRefGoogle Scholar
  11. Furuta, T. (1992) in Thome, S. (Editor) Modelling of a liquid food droplet on drying Mathematical Modelling of Food Processing Operations. Elsevier Applied Science, London, 99–136.Google Scholar
  12. Furuta, T., Hayashi, H. and Ohashis, T. (1994) Some criteria of spray drying design for food liquid, Drying Technology 12 (12) 151–177.CrossRefGoogle Scholar
  13. Gluckert, F.A. (1962) A theoretical correlation of spray drying performance, J. AIChE 8 (44) 460–466.CrossRefGoogle Scholar
  14. Greenwald, C.G. and King, C.J. The mechanism of particle expansion in spray drying of foods, AIChE, Symposium Series 78 (218) 101.Google Scholar
  15. Gretzinger, J. and Marshall, W.R. (1961) Characteristics of pneumatic atomization, J. AIChE 7 (2) 312–316. Grajales, R. (1996) Reconstrucción de un secador por aspersion y desarrollo de un modelo matematico para la predicción de condiciones de secado. Tesis IBQ. ENCB-IPN, México.Google Scholar
  16. Gutiérrez, G., Ordorica, C., Osorio, G., Hernandez, A., Patino,R., Jiménez, A. y Santiago, T (1997) ASCON–Programa para el establecimiento de las condiciones de operación en secadores por aspersion de disco rotatorio. En A. Mulet, C. Ordorica y J. Benedito (eds), Herramientas de Calculo en Ingeniería de Alimentos III. Univ. Politécnica de Valencia, Instituto Politécnico Nacional. Espana, México pp 93–103.Google Scholar
  17. Gutiérrez, G. (1978) Establecimiento de las condiciones de operación en el proceso e fabricación de leche en polvo, entera y descremada, a nivel de planta piloto. Tesis IBQ. ENCB-IPN, México.Google Scholar
  18. Gutiérrez, G. (1980) Estudio hidrodinamico de la atomización de pasta de jitomate para ser secado por aspersion. Tesis M. en C. ENCB-IPN, México.Google Scholar
  19. Gutiérrez, E., Jiménez, A., Martinez, J. and Rodriguez, H. (1980) Estudio técnico-económico del secado de la pulpa de papaya proveniente del proceso de obtención de latex. Tesis IQ. ESIQIE-IPN, México. Johnson, R.K., Anantheswarann, R.C. and Law, S.E. (1996) Electrostatic-enhanced atomisation for spray drying of milk Lebensmittel-wissenschaft und Technologie 29 (1,2) 71–81.Google Scholar
  20. Kerkhoff, P.J.A.M. (1994) The role of theoretical and mathematical modelling in scale-up, Drying Technology 12 (12), 1–46.CrossRefGoogle Scholar
  21. Kieviet, F. and Kerkhoff, P.J.A.M. (1995) Measurement of particle residence time distributions in a cocurrent spray drier, Drying Technology 13 (5–7), 1241–1248.CrossRefGoogle Scholar
  22. Kim, C.K. and Yoon, Y.S. (1995) Development of digoxin dry elixir as a novel dosage form using a spray-drying technique, Journal of Microencapsulation 12 (5), 547–556.CrossRefGoogle Scholar
  23. Levenspiel, O. (1972) Chemical Reaction Engineering, John Wiley Sons, N.Y.Google Scholar
  24. Lang, W (1984) Spray drying. Part I: a practical guide to selection and design. SPS DRY VOL V (revised), G3172, Harwell/Warren SpringGoogle Scholar
  25. Masters, K.. (1968) Spray drying, the unit operation today, Ind. and Engineering Chemistry 60 (10), 53–59. Masters, K (1972) Spray Drying. Leonard Hill, London.Google Scholar
  26. Masters, K. (1985) Spray Drying Handbook. George Godwin, London.Google Scholar
  27. Mercado, J. and Gutiérrez, G. (1995) Aplicación de un modelo cinetico de reacciones químicas heterogéneas gas-solido al secado por lecho fluidizado de cubos de papa, in A. Mulet, C. Ordorica and J. Bon (eds). Herramientas de Calculo en Ingeniería de Alimentos III, Universidad Politécnica de Valencia, Valencia, pp. 87–106.Google Scholar
  28. Moura, T.F., Gaudy, D., Jacob, M., Terol, A., Pauvert, B. and Chauvet, A. (1996) Vitamin C spray-drying-study of the thermal constraint, Drug Development and Industrial Pharmacy 22 (5), 393–400.CrossRefGoogle Scholar
  29. Navarro, N. (1992) Acondicionamiento de un secador por aspersion de laboratorio y desarrollo de un modelo matematico para la predicción de las condiciones de operación del secador en flujo mixto y paralelo. Tesis IBQ. ENCB-IPN, México.Google Scholar
  30. Negiz, A., Lagergren, E.S. and Cinar, A. (1995) Mathematical models of cocurrent spray drying, Industrial and Engineering Chemistry Research 34 (10), 3289–3302.CrossRefGoogle Scholar
  31. Oakley, D.E. (1994) Scale-up of spray dryers with the aid of computational fluid dynamics, Drying Tecnology 12 (12), 217–233.CrossRefGoogle Scholar
  32. Onwulata, C., Smith, P.W., Craig, J.C. and Holsinger, V.H. (1994) Physical properties of encapsulated spray-dried milkfat, Journal of Food Science 59 (2) 316–320.CrossRefGoogle Scholar
  33. Patino, R (1995) Propuesta de algunos parametros hidrodinamicos y de transferencia de calor y masa propios de la ingeniería basica del secado por aspersion en equipos con atomizadores rotatorios. Tesis IBQ-ENCB-IPN, México.Google Scholar
  34. Poda, G., Cesaroni, D., Rossi, I and Massa, S. (1995) A comparison between two methods for the recovery of Listeria monocytogenes in milk powder reference samples, Journal of Food Quality 18 (2), 167–172.Google Scholar
  35. Reay, D. and Huber, R.A. (1984) Spray Drying. Part 5. Scientific Background, SPS DRY 5 DR5 (revised), G 4542, SPS, Harwell/Warren Spring. SPS (1987) Manual of drying technology. Spray Drying: Atomization of spray-dryer feedstocks,Harwell, Vol. 5, Part 2:Google Scholar
  36. Schuck, P., Piot, M., Mejean, S., Fauquant, J., Brule, G. and Maubois, J.L. (1994) Dehydration of an ultraclean milk and micellar casein enriched milk, Lait, 74 (1), 47–63.CrossRefGoogle Scholar
  37. Takada, S., Uda,Y., Toguchi, H. and Ogawa, Y. (1994) Preparation and characterization of copolyl (DL-Lactic glyconic acid) microparticles for sustained-release of thyrotropin releasing-hormone by double nozzle spray-drying method, Journal of Controlled Release 32 (1), 79–85.Google Scholar
  38. To, B.C.S. and Etzel, M.R. (1997) Survival of Brevibacterium lines (ATCC 9174) after spray drying, freeze drying or freezing, Journal of Food Science 62 (1), 167–170.CrossRefGoogle Scholar
  39. Wagenaar, B.W. and Muller, B.W. (1994) Piroxicam release from spray-dried biodegradable microspheres. Biomaterials, 15 (1) 49–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Prolongación de Carpio y Plan de AyalaEscuela Nacional de Ciencias Biológicas-IPNMéxico, D.FMexico
  2. 2.Food Science and Technology DepartmentThe University of ReadingReadingUK
  3. 3.CEPROBI-IPNMexico

Personalised recommendations