Hemoproteins as Biocatalysts for the Oxidation of Polycyclic Aromatic Hydrocarbons



The use of fossil fuels for energy and as raw materials during the last century has been the origin of some widespread environmental pollution. Among these pollutants are the polycyclic aromatic hydrocarbons (PAH’s) that are considered to be a potential health risk because of their possible carcinogenic and mutagenic activities [1]. Aromatic hydrocarbons are also formed during the pyrolysis of organic matter and are ubiquitous in nature. The ability of microorganisms (bacteria and fungi) to modify PAH’s by oxidation is well known, and a number of comprehensive reviews have been written on the microbial metabolism of PAH’s [2–5].


Polycyclic Aromatic Hydrocarbon Lignin Peroxidase Phanerochaete Chrysosporium Manganese Peroxidase Cumene Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Agency for Research on Cancer.: /ARC Monographs on Evaluation of theCarcinogenic Risk of Chemicals to Human. Vol. 32, Lyon, France, 1984.Google Scholar
  2. 2.
    Atlas, R.M.: Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45 (1981), 180–209.Google Scholar
  3. 3.
    Atlas, R.M.: Petroleum microbiology. MacMillan Publishing Co., New York, 1984.Google Scholar
  4. 4.
    Colwell, R.R. and Walker, J.D. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. Crit. Rev. Microbiol. 5 (1977), 423–445.CrossRefGoogle Scholar
  5. 5.
    Gibson, T.D.:Microbial degradation of aromatic compounds. Science 161 (1968), 1093–1097.CrossRefGoogle Scholar
  6. 6.
    Thomas, J.M., Yordy, J.R., Amador, J.A. and Alexander, M.: Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52 (1986), 290–296.Google Scholar
  7. 7.
    Guerin, W.F. and Boyd, S.A.: Diffrencial bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58 (1992), 1142–1152.Google Scholar
  8. 8.
    Stucki, G. and Alexander, M.:Role of dissolution rate and solubility in biodegradtion of aromatic compounds. Appl. Environ. Microbiol. 53 (1987), 292–297.Google Scholar
  9. 9.
    Ortega-Calvo, J.J. and Alexander, M.: Roles of bacterial attachment and spontaneous partitioning in the bidegradtion of naphthalene initially present in non-aqueous-phase liquids. Appl. Environ Microbiol. 60 (1994), 2643–2646.Google Scholar
  10. 10.
    Grimberg, S.J., Stringfellow, W.T. and Aitken, M.D.: Quantifying the biodegradtion of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl. Environ. Microbiol. 62 (1996), 2387–2392.Google Scholar
  11. 11.
    Jimenez, I.Y. and Bartha, R.: Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 62 (1996), 2311–2316.Google Scholar
  12. 12.
    Simandi, L.: Catalytic activation of dioxygen by metal complexes. Kluwer, Amsterdam., 1992.CrossRefGoogle Scholar
  13. 13.
    Hrycay, E.G. and O’Brien, P.J.: Cytochrome P450 as microsomal peroxidase utilizing a lipid peroxide substrate. Arch. Biochem. Biophys. 147 (1971), 14–27.CrossRefGoogle Scholar
  14. 14.
    Lichtenberger, F., Nastainczyk, W. and Ullrich, V.: Cytochrome P450 as an oxene transferase. Biochem. Biophys. Res. Comm. 70 (1975), 939–346.CrossRefGoogle Scholar
  15. 15.
    Hrycay, E.G., Gustafsson, J.A., Ingelman-Sunberg, M. and Ernest, L.: Sodium periodate, sodium chlorite, organic hydroperoxides, and H202 as hydroxylating agents in setroid hydroxilation reactions catalized partially purified cytochrome P450. Biochem. Biophys. Res. Comm. 66 (1975), 209–216.CrossRefGoogle Scholar
  16. 16.
    Nordblum, G.D., White, R.E., and Coon, M.J.: Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P450. Arch. Biochem. Biophys. 175 (1976), 524533.Google Scholar
  17. 17.
    Akasaka, R., Mushino, T. and Hirobe, M.: Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c. Arch. Biochem. Biophys. 301 (1993), 355–360.CrossRefGoogle Scholar
  18. 18.
    Akasaka, R., Mushino, T. and Hirobe, M.: Hydroxylation of benzene by immobilized cytochrome c in an organic solvent. J. Chem. Soc. Perkin Trans. 1. (1994), 1817–1821.CrossRefGoogle Scholar
  19. 19.
    Vazquez-Duhalt, R., Westlake, D.W.S. and Fedorak, P.M.: Cytochrome c as biocatalyst for the oxidation of thiophenes and organosulfides. Enzyme Microb. Technol. 15 (1993), 494–499.CrossRefGoogle Scholar
  20. 20.
    Torres, E., Sandoval, J.V., Rosell, F.I., Mauk, A.G. and Vazquez-Duhalt, R.: Site-directed mutagenesis improves the biocatalytic activity of iso-1-cytochrome c in polycyclic hydrocarbon oxidation. Enzyme Microb. Technol. 17 (1995), 1014–1020.CrossRefGoogle Scholar
  21. 21.
    Mieyal, J.J., Ackerman, R.S., Blumer J.L. and Freeman, L.S.: Characetrization of enzyme-like activity of human hemoglobin. Properties of the hemoglobin-P450-reductase-coupled aniline hydrolase system. J. Biol. Chem. 251 (1976), 3436–3441.Google Scholar
  22. 22.
    Yoshida, Y., Kashiba, K. and Niki, E.: Free radical-mediated oxidation of lipids induced by hemoglobin in aqueous dispersions. Biochim. Biophys. Acta 1201 (1994), 165–172.CrossRefGoogle Scholar
  23. Kedderis, G.L., Rickert, D.E., Pandey, R.N. and Hollenberg, P.F.: Oxygen-18 studies of the peroxidase catalyzed oxidations of N-methylcarbazole. Mechanisms of the carbinolamine and carboxaldehyde formation. J. Biol. Chem. 261 (1986) 15910–15914.Google Scholar
  24. 24.
    Klyachko, N.L. and Klibanov, A.M.: Oxidation of dibenzothiophene catalyzed by hemoglobin and other hemoprotein in various aqueous-organic media. Appl. Biochem. Biotechnol. 37 (1992), 53–68.CrossRefGoogle Scholar
  25. 25.
    Alvarez, J.C. and Ortiz de Montellano, P.R. 1992. Thianthrene 5-oxide as probe of the electrophilicity of hemoprotein oxidizing species. Biochemistry 31: 8373–8380.CrossRefGoogle Scholar
  26. 26.
    Catalano, C.E. and Ortiz de Montellano, P.R.: Oxene transfer, electron abstraction, and cooxidation in the epoxidation of stilbene and 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene by hemoglobin. Biochemistry 26 (1987), 8373–8380.CrossRefGoogle Scholar
  27. 27.
    Ortiz-Leon, M, Velasco, L. and Vazquez-Duhalt, R.: Biocatlytic oxidation of polycyclic aromatic hydrocarbons by hemoglobin and hydrogen peroxide. Biochem. Biophys. Res. Comm. 215 (1995), 968973.Google Scholar
  28. 28.
    Aitken, M.D. and Irvine, R.L.: Stability testing of ligninase and Mn-poeroxidase from Phanerochaete chrysosporium. Biotechnol. Bioeng. 34 (1989), 1251–1260.CrossRefGoogle Scholar
  29. 29.
    Hu, Z.C., Korus, R.A., Venkataramu, C.R. and Crawford, R.L.: Deactivation kinetics of lignin peroxidase from Phanerochaete chrysosporium. Enzyme Microb. Technol. 15 (1993), 567–574.CrossRefGoogle Scholar
  30. 30.
    Arnao, M.B., Acosta, M., del Rio, J.A., Varon, R. and Garcia-Canovas, F.: A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim. Biophys. Acta 1041 (1990), 43–47.CrossRefGoogle Scholar
  31. 31.
    Mylrajan, M., Valli, K., Wariishi, H., Gold, M.H. and Loehr, T.M.: Resonance raman spectroscopic characetrization of compound III of lignin peroxidase. Biochemistry 29 (1990), 9617–9623.CrossRefGoogle Scholar
  32. 32.
    Farrell, R.L., Murtagh, K.E., Tien, M., Mozuch, M.D. and Kirk,T.K.: Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb. Technol. 11 (1989), 322–328.CrossRefGoogle Scholar
  33. 33.
    Sanglard, D., Leisola, M.S.A. and Fiechter, A.: Role of extracellular ligninases in biodegradtion of benzo(a)pyrene by Phanerochaete chrysosporium. Enzyme Microb. Technol. 8 (1986), 209–212.CrossRefGoogle Scholar
  34. 34.
    Hammel, K.E., Kalyanaraman, B. and Kirk, T.K.: Oxidation of polycyclic aromatic hydrocarbons and dibenzo(p)dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261 (1986), 16984–16952.Google Scholar
  35. 35.
    Vazquez-Duhalt, R., Westlake, D.W.S. and Fedorak, P.M.: Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl. Environ. Microbiol. 60 (1994), 459–466.Google Scholar
  36. 36.
    Haemmerli, S.D., Leisola, M.S.A., Sanglard, D. and Fiechter, A. 1986. Oxidation of benzo(a)pyrene by extracellular ligninase of Phanerochaete chrysosporium. J. Biol. Chem. 261 (1986), 6900–6903.Google Scholar
  37. 37.
    Field, J.A., Vledder, R.H., van Zelst, J.G. and Rulkens, W.H.: The tolerance of lignin peroxidase and manganase-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent:water mixtures. Enzyme Microb. Technol. 18 (1996), 300–308.CrossRefGoogle Scholar
  38. 38.
    Tatarko, M. and Bumpus, J.A.: Biodegradation of phenethrene by Phanerochaete chrysosporium: on the role of lignin peroxidase. Lett. Appl. Microbiol. 17 (1993), 20–24.CrossRefGoogle Scholar
  39. 39.
    Hammel, K.E. and Tradone, P.J.: The oxidative 4-dechlorination of polychlorinated phenols is catalized by extracellular fungal lignin peroxidase. Biochemistry 27 (1988), 6563–6568.CrossRefGoogle Scholar
  40. 40.
    Vazquez-Duhalt, R., Westlake, D.W.S. and Fedorak, P.M.: Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Appl. Microbiol. Biotechnol. 42 (1995), 675–681.CrossRefGoogle Scholar
  41. 41.
    Gold, M.H., Glenn, J.K. and Alic, M.: Use of polymeric dyes in lignin biodegradation assays. Methods in Enzymology 161 (1988), 74–78.CrossRefGoogle Scholar
  42. 42.
    Cripps, C., Bumpus, J.A. and Aust, S.D.: Biodegradtion of azo and heterocycle dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56 (1990), 1114–1118.Google Scholar
  43. 43.
    Piontek, K., Glumoft, T. and Winterhalter, K.: Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Len. 315 (1993), 119–124.CrossRefGoogle Scholar
  44. 44.
    Gold, M.H. and Alic, M.: Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57 (1993), 605–622.Google Scholar
  45. 45.
    Pease, E.A. and Tien, M.: Heterogenity and regulation of manfganese peroxidase from Phanerochaete chrysosporium. J. Bacteriol. 174 (1992), 3532–3540Google Scholar
  46. 46.
    Wariishi, H., Akileswaran, L. and Gold, M.H.: Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Spectral characetrization of the oxidized states and the catalytic cycle. Biochemistry 27 (1998), 5365–5370.CrossRefGoogle Scholar
  47. 47.
    Field, J.A., de Jong, E., Feijoo-Costa G. and de Bont J.A.M.: Sceening for ligninolytic fungi applicable to the biodegradtion of xentobiotics. Trends in Biotechnol. 11 (1993)Google Scholar
  48. 48.
    Popp, J.L. and Kirk, T.K.: Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+. Arch. Biochem. Biophys. 288 (1991), 145–148.CrossRefGoogle Scholar
  49. 49.
    Moen, M.A. and Hammel, K.E.: Lipid peroxidation by manganese peroxidase of Phanerochaete chrysisporium is the basis for phenenthtrene oxidation by the intact fungus. Appl. Environ. Microbiol. 60 (1994), 1956–1961.Google Scholar
  50. 50.
    Bogan, B.W., Lamar, R.T. and Hammel, K.E.: Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl. Environ. Microbio!. 62 (1996), 1788–1792.Google Scholar
  51. 51.
    Bogan, B.W., Schoenike, B., Lamar, R.T. and Cullen, D.: Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic hydrocarbons-contaninated soil with Phanerochaete chrysisporium. Appl. Environ. Microbio!. 62 (1996), 2381–2386.Google Scholar
  52. 52.
    Bogan, B.W. and Lamar, R.T.: One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbio!. 61 (1995), 2631–2635.Google Scholar
  53. 53.
    Kotterman, M.J.J., Wasseveld, R.A. and Field, J.A.: Hydrogen peroxide production as a limiting factor in xentobiotic compound oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55 overproducing peroxidases. Appl. Environ. Microbio!. 62 (1996), 880–885.Google Scholar
  54. 54.
    Field, J.A., Vledder, R.H., van Zelst, J.G. and Rulkens, W.H.: The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent: water mixtures. Enzyme Microb. Technol. 18 (1996), 300–308.CrossRefGoogle Scholar
  55. 55.
    Bogan, B.W. and Lamar, R.T.: Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. App!. Environ. Microbio!. 62 (1996), 15971603.Google Scholar
  56. 56.
    Coon, M.J., Vaz, A.D.N. and Bestervelt, L.L.: Peroxidative reactions of diversozymes. FASEB J. 10 (1996), 428–434.Google Scholar
  57. 57.
    Ortiz de Montellano, P.R.: Cytochrome P450, Structure, Mechanism and Biochemistry. Plenum Press, New York, 1986.Google Scholar
  58. 58.
    Dawson, J.H. and Sono, M.: Cytochrome P-450 and chloroperoxidase: thiolate-ligated heure enzymes. Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation. Chem. Rev. 87 (1987), 1255–1276.CrossRefGoogle Scholar
  59. 59.
    Capdevilla, J., Estabrook, R.W and Prough, R.A.: Differences in the mechanism of NADPH- and cumene hydroperoxide supported reactions of cytochrome P-450. Arch. Biochem. Biophys 200 (1980), 186–195.CrossRefGoogle Scholar
  60. 60.
    Dawson, J.H.: Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240 (1988), 433–439.CrossRefGoogle Scholar
  61. 61.
    Wiseman, A.: Xentobiotic-metabolising cytochrome P-450 from micro-organisms. Trends Biochem. Sci. April (1980), 102–104.Google Scholar
  62. 62.
    Jones, J.P., Shou, M. and Korzekwa, K.R.: Stereospecific activation of the procarcinogen benzo(a)pyrene: A probe for active site of the cytochrome P450 superfamily. Biochemistry 34 (1995), 6956–6961.CrossRefGoogle Scholar
  63. 63.
    Dehnen, W., Tomingas, R. and Roos, J.: A modified method for the assay of benzo(a)pyrene hydrolase. Anal. Biochem. 53 (1973), 373–383.CrossRefGoogle Scholar
  64. 64.
    King, D.J., Azari, M.R. and Wiseman, A.: Studies on the properties og highly purified cytochrome P-448 and its dependent activity benzo(a)pyrene hydrolase, from Saccharomyces cerevisiae. Xenobiotica 14 (1984), 187–206.CrossRefGoogle Scholar
  65. 65.
    Kelly, S.L., Lamb, D.C., Baldwin, B.C. and Kelly D.E.: Benzo(a)pyrene hydroxylase activity in yeast is mediated by P450 other than sterol 14a-demethylase. Biochem Biophys. Res. Comm. 197 (1993), 428432.Google Scholar
  66. 66.
    Azari, M.R. and Wiseman, A.: Evaluation of immobilized cytochrome P-448 from Saccharomyces cerevisiae using permeabilized whole cell, microsomal fraction and highly purified reconstituted forms, with benzo(a)pyrene-3-monooxygenase activity. Enzyme Microb. Technol. 4 (1982), 401–404.Google Scholar
  67. 67.
    Masaphy, S., Levanon, D., Henis, Y., Venkateswarlu, K. and Kelly, S.L.: Microsomal and cytosolic cytochrome P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius. Biotechnol. Lett. 17 (1995), 969–974.CrossRefGoogle Scholar
  68. 68.
    Koley, A.P., Buters, J.T.M., Robinson, R.C., Markowitz, A. and Friedman, F.K.: Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 lAl: a CO flash photolysis study. Arch. Biochem. Biophys. 336 (1996), 261–267.CrossRefGoogle Scholar
  69. 69.
    Anzenbacher, P., Niwa, T., Tolbert, L.M., Sirimanne, S.R. and Guengerich, F.P.: Oxidation of 9alkylanthracenes by cytochrome P450 2B1, horseradish peroxidase and iron tetraphenylporphine/ iodosylbenzene systems: anaerobic and aerobic mechanisms. Biochemistry 35 (1996), 2512–2520.CrossRefGoogle Scholar
  70. 70.
    Rahimtula, A.D., O’Brien, P.J., Seifreid, H.E. and Jerina, D.M.: The mechanism of action of cytochrome P-450. Occurrence of the “NIH shift” during hydroperoxide-dependent aromatic hydroxylations. Eur. J. Biochem. 89 (1988), 133–141.CrossRefGoogle Scholar
  71. 71.
    Shou, M., Krausz, K.W., Gonzalez, F.J. and Gelboin, H.V.: Metabolic activation of the potent carcinogen dibenzo(a,1)pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis 17 (1995), 2429–2436.CrossRefGoogle Scholar
  72. 72.
    Backes, W.L., Hogaboom, M. and Canady, W.J.: The true hydrophobicity of microsomal cytochrome P450 in the rat. J. Biol. Chem. 257 (1982), 4063–4070.Google Scholar
  73. 73.
    Backes, W.L., Cawley, G., Eyer, C.S., Means, M., Causey, K.M. and Canady, W.J.: Aromatic hydrocarbon binding to cytochrome P450 and other enzyme binding sites: Are hydrophobic compounds drawn into the active site or pushed from the aqueous phase. Arch. Biochem. Biophys. 304 (1993), 27–37.CrossRefGoogle Scholar
  74. 74.
    Fowler, S.M., England, P.A., Westlake, A.C,G., Rouch, D.R., Nickerson, D.P., Blunt, C., Braybrook, D., West, S., Wong, L.L. and Flitsch, S.L.: Cytochrome P-450cam monooxygenase can be redesigned to catalyse the regioselective aromatic hydroxylation of diphenylmethane. J. Chem. Soc. Chem. Commun. (1994), 2761–2762.Google Scholar
  75. 75.
    Modi, S., Primrose, W.U., Lian, L.Y. and Roberts, G.C.K.: Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem J. 310 (1995), 939–943.Google Scholar
  76. 76.
    Margoliash, E. and Schejter, A.: Cytochrome c. Adv. Protein Chem. 21 (1966), 113–286.CrossRefGoogle Scholar
  77. 77.
    Pettigrew, G.W. and Moore, G.R.: Cytochromes c. Biological Aspects. Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar
  78. 78.
    Scott, R.A. and A. Mauk, G.: Cytochrome c: A multidisciplinary approach. University Science Books. Sausalito, CA., 1995.Google Scholar
  79. 79.
    Dickerson, R.E.: in The Evolution of Protein Structure and Function. Academic Press, New York, 1980, 173–202.Google Scholar
  80. 80.
    Tappel, A.L.: Arch. Biochem. Biophys. 44 (1955), 368–395.Google Scholar
  81. 81.
    Florence, T.M.J.: Inorg. Biochem. 23 1985 ), 131–141.CrossRefGoogle Scholar
  82. 82.
    Harel, S. and Kanner, J.: Free Radic. Res. Commun. 5 (1988), 21–33.CrossRefGoogle Scholar
  83. 83.
    Radi, R., Thomson, L., Rubbo, H. and Prodanov, E.: Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch. Biochem. Biophys. 288 (1991), 112–117.CrossRefGoogle Scholar
  84. 84.
    Fujita, A., Senzu, H., Kunitake, T. and Hamachi, I.: Enhanced peroxidase activity of cytochrome c by phosphate bilayer membrane. Chem. Lett. (1994), 1219–1222.Google Scholar
  85. 85.
    Vazquez-Duhalt, R., Semple, K.M., Westlake, D.W.S. and Fedorak, P.M.: Effect of water-miscible organic solvents on the catalytic activity of cytochrome c. Enzyme Microb. Technol. 15 (1993), 936–943.CrossRefGoogle Scholar
  86. 86.
    Mauk, A.G.: Electron transfer in genetically engineered proteins. The cytochrome c paradigm. Struct. Bonding 75 (1991), 131–157.Google Scholar
  87. 87.
    Fumo, G., Spitzer, J.S. and Fetrow, J.S.: A method of directed random mutagenesis of the yeast chromosome shows that the iso-l-cytochrome c heure ligand His18 is essential. Gene 164 (1995), 33–39.CrossRefGoogle Scholar
  88. 88.
    Vazquez-Duhalt, R., Torres, E. and Tinoco, R.: in: In Situ and On-site Bioremediation. Vol. 12, Battelle Press. Columbus, Ohio, 225–230, 1997.Google Scholar
  89. 89.
    Tinoco, R. and Vazquez-Duhalt, R.: Chemical modification of cytochrome c improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme Microb. Technol. (in press).Google Scholar
  90. 90.
    Ban, D.P. and Mason, R.P.: Mechanism of radical production from reaction of cytochrome c with organic hydroperoxides. J. Biol. Chem. 270 (1995), 12709–12716.CrossRefGoogle Scholar
  91. 91.
    Cadenas E., Boveris A. and Chance B.: Low-level chemiluminescence of hydroperoxide-supplemented cytochrome c. Biochem. J. 187 (1980), 131–140.Google Scholar
  92. 92.
    Davies, M.J.: Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy. Biochem. Biophys. Acta 28 (1988), 28–35.Google Scholar
  93. 93.
    Mieyal, J.J., Ackerman, R.S., Blumer, J.L. and Freeman, L.S.: Characterization of enzyme-like activity of human hemoglobin. J. Biol. Chem. 251 (1976), 3436–3441.Google Scholar
  94. 94.
    Yoshida, Y, Kashiba, K and Niki, E.: Free radical-mediated oxidation of lipids induced by hemoglobin in aqueous dispersions. Biochim. Biophys. Acta 1201 (1994), 165–172.CrossRefGoogle Scholar
  95. Kedderis, G.L., Rickert, D.E., Pandey, R.N. and Hollenberg, P.F.: ‘80 studies of the peroxidase-catalyzed oxidation of N-methylcarbazole. J. Biol. Chem. 261 (1986) 15910–15914.Google Scholar
  96. 96.
    Winterbourn, C.C., French, J.K. and Claridge, R.F.C.: The reaction of menadione with haemoglobin. Biochem. J. 179 (1979), 665–673.Google Scholar
  97. 97.
    Giulivi, C. and Davies, K.J.A.: A novel antioxidant role for hemoglobin. J. Biol. Chem. 265 (1990), 19453–19460.Google Scholar
  98. 98.
    Thornalley, P.J., Trotta, R.J. and Stem, A.: Free radical involvment in the oxidative phenomena induced by ter-butyl-hydroperoxide in erythrocytes. Biochim. Biophys. Acta 759 (1983), 16–22.CrossRefGoogle Scholar
  99. 99.
    Durant, J.L., Busby, W.F., Lafleur, A.L., Penman, B.W. and Crespi, C.L.: Human cell mutagenecity of oxigenated, nitred and unsubstitued polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Res. 371 (1996), 123–157.CrossRefGoogle Scholar
  100. 100.
    Torres, E., Tinoco, R. and Vazquez-Duhalt, R.: Solvent hydrophobicity predicts biocatalytic behaviour of lignin peroxidase and cytochrome c in aqueous solution of water-miscible organic solvents. J. Biotechnol. 49 (1996), 59–67.CrossRefGoogle Scholar
  101. 101.
    Male, K.B., Brown, R.S. and Luong, J.H.T.: Enzymatic oxidation of water-soluble cyclodextrinpolynuclear aromatic hydrocarbon inclusion complexes using lignin peroxidase. Enzyme Microb., Technol. 17 (1995), 607–614.Google Scholar
  102. 102.
    DePillis G.D., Ozak S., Kuo J.M., Maltby D.A. and Ortiz de Montellano P.R.: Autocatalytic processing of heme by lactoperoxidase produces the active protein-bond prosthetic group. J. Biol. Chem. 272 (1997), 8857–8860.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Instituto de Biotecnología UNAMCuernavaca, MorelosMexico

Personalised recommendations