Skip to main content

Hemoproteins as Biocatalysts for the Oxidation of Polycyclic Aromatic Hydrocarbons

  • Chapter

Abstract

The use of fossil fuels for energy and as raw materials during the last century has been the origin of some widespread environmental pollution. Among these pollutants are the polycyclic aromatic hydrocarbons (PAH’s) that are considered to be a potential health risk because of their possible carcinogenic and mutagenic activities [1]. Aromatic hydrocarbons are also formed during the pyrolysis of organic matter and are ubiquitous in nature. The ability of microorganisms (bacteria and fungi) to modify PAH’s by oxidation is well known, and a number of comprehensive reviews have been written on the microbial metabolism of PAH’s [2–5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Agency for Research on Cancer.: /ARC Monographs on Evaluation of theCarcinogenic Risk of Chemicals to Human. Vol. 32, Lyon, France, 1984.

    Google Scholar 

  2. Atlas, R.M.: Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45 (1981), 180–209.

    CAS  Google Scholar 

  3. Atlas, R.M.: Petroleum microbiology. MacMillan Publishing Co., New York, 1984.

    Google Scholar 

  4. Colwell, R.R. and Walker, J.D. 1977. Ecological aspects of microbial degradation of petroleum in the marine environment. Crit. Rev. Microbiol. 5 (1977), 423–445.

    Article  CAS  Google Scholar 

  5. Gibson, T.D.:Microbial degradation of aromatic compounds. Science 161 (1968), 1093–1097.

    Article  CAS  Google Scholar 

  6. Thomas, J.M., Yordy, J.R., Amador, J.A. and Alexander, M.: Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52 (1986), 290–296.

    CAS  Google Scholar 

  7. Guerin, W.F. and Boyd, S.A.: Diffrencial bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58 (1992), 1142–1152.

    CAS  Google Scholar 

  8. Stucki, G. and Alexander, M.:Role of dissolution rate and solubility in biodegradtion of aromatic compounds. Appl. Environ. Microbiol. 53 (1987), 292–297.

    CAS  Google Scholar 

  9. Ortega-Calvo, J.J. and Alexander, M.: Roles of bacterial attachment and spontaneous partitioning in the bidegradtion of naphthalene initially present in non-aqueous-phase liquids. Appl. Environ Microbiol. 60 (1994), 2643–2646.

    CAS  Google Scholar 

  10. Grimberg, S.J., Stringfellow, W.T. and Aitken, M.D.: Quantifying the biodegradtion of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl. Environ. Microbiol. 62 (1996), 2387–2392.

    CAS  Google Scholar 

  11. Jimenez, I.Y. and Bartha, R.: Solvent-augmented mineralization of pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 62 (1996), 2311–2316.

    CAS  Google Scholar 

  12. Simandi, L.: Catalytic activation of dioxygen by metal complexes. Kluwer, Amsterdam., 1992.

    Book  Google Scholar 

  13. Hrycay, E.G. and O’Brien, P.J.: Cytochrome P450 as microsomal peroxidase utilizing a lipid peroxide substrate. Arch. Biochem. Biophys. 147 (1971), 14–27.

    Article  CAS  Google Scholar 

  14. Lichtenberger, F., Nastainczyk, W. and Ullrich, V.: Cytochrome P450 as an oxene transferase. Biochem. Biophys. Res. Comm. 70 (1975), 939–346.

    Article  Google Scholar 

  15. Hrycay, E.G., Gustafsson, J.A., Ingelman-Sunberg, M. and Ernest, L.: Sodium periodate, sodium chlorite, organic hydroperoxides, and H202 as hydroxylating agents in setroid hydroxilation reactions catalized partially purified cytochrome P450. Biochem. Biophys. Res. Comm. 66 (1975), 209–216.

    Article  CAS  Google Scholar 

  16. Nordblum, G.D., White, R.E., and Coon, M.J.: Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P450. Arch. Biochem. Biophys. 175 (1976), 524533.

    Google Scholar 

  17. Akasaka, R., Mushino, T. and Hirobe, M.: Cytochrome P450-like substrate oxidation catalyzed by cytochrome c and immobilized cytochrome c. Arch. Biochem. Biophys. 301 (1993), 355–360.

    Article  CAS  Google Scholar 

  18. Akasaka, R., Mushino, T. and Hirobe, M.: Hydroxylation of benzene by immobilized cytochrome c in an organic solvent. J. Chem. Soc. Perkin Trans. 1. (1994), 1817–1821.

    Article  Google Scholar 

  19. Vazquez-Duhalt, R., Westlake, D.W.S. and Fedorak, P.M.: Cytochrome c as biocatalyst for the oxidation of thiophenes and organosulfides. Enzyme Microb. Technol. 15 (1993), 494–499.

    Article  CAS  Google Scholar 

  20. Torres, E., Sandoval, J.V., Rosell, F.I., Mauk, A.G. and Vazquez-Duhalt, R.: Site-directed mutagenesis improves the biocatalytic activity of iso-1-cytochrome c in polycyclic hydrocarbon oxidation. Enzyme Microb. Technol. 17 (1995), 1014–1020.

    Article  CAS  Google Scholar 

  21. Mieyal, J.J., Ackerman, R.S., Blumer J.L. and Freeman, L.S.: Characetrization of enzyme-like activity of human hemoglobin. Properties of the hemoglobin-P450-reductase-coupled aniline hydrolase system. J. Biol. Chem. 251 (1976), 3436–3441.

    CAS  Google Scholar 

  22. Yoshida, Y., Kashiba, K. and Niki, E.: Free radical-mediated oxidation of lipids induced by hemoglobin in aqueous dispersions. Biochim. Biophys. Acta 1201 (1994), 165–172.

    Article  CAS  Google Scholar 

  23. Kedderis, G.L., Rickert, D.E., Pandey, R.N. and Hollenberg, P.F.: Oxygen-18 studies of the peroxidase catalyzed oxidations of N-methylcarbazole. Mechanisms of the carbinolamine and carboxaldehyde formation. J. Biol. Chem. 261 (1986) 15910–15914.

    Google Scholar 

  24. Klyachko, N.L. and Klibanov, A.M.: Oxidation of dibenzothiophene catalyzed by hemoglobin and other hemoprotein in various aqueous-organic media. Appl. Biochem. Biotechnol. 37 (1992), 53–68.

    Article  CAS  Google Scholar 

  25. Alvarez, J.C. and Ortiz de Montellano, P.R. 1992. Thianthrene 5-oxide as probe of the electrophilicity of hemoprotein oxidizing species. Biochemistry 31: 8373–8380.

    Article  Google Scholar 

  26. Catalano, C.E. and Ortiz de Montellano, P.R.: Oxene transfer, electron abstraction, and cooxidation in the epoxidation of stilbene and 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene by hemoglobin. Biochemistry 26 (1987), 8373–8380.

    Article  CAS  Google Scholar 

  27. Ortiz-Leon, M, Velasco, L. and Vazquez-Duhalt, R.: Biocatlytic oxidation of polycyclic aromatic hydrocarbons by hemoglobin and hydrogen peroxide. Biochem. Biophys. Res. Comm. 215 (1995), 968973.

    Google Scholar 

  28. Aitken, M.D. and Irvine, R.L.: Stability testing of ligninase and Mn-poeroxidase from Phanerochaete chrysosporium. Biotechnol. Bioeng. 34 (1989), 1251–1260.

    Article  CAS  Google Scholar 

  29. Hu, Z.C., Korus, R.A., Venkataramu, C.R. and Crawford, R.L.: Deactivation kinetics of lignin peroxidase from Phanerochaete chrysosporium. Enzyme Microb. Technol. 15 (1993), 567–574.

    Article  CAS  Google Scholar 

  30. Arnao, M.B., Acosta, M., del Rio, J.A., Varon, R. and Garcia-Canovas, F.: A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochim. Biophys. Acta 1041 (1990), 43–47.

    Article  CAS  Google Scholar 

  31. Mylrajan, M., Valli, K., Wariishi, H., Gold, M.H. and Loehr, T.M.: Resonance raman spectroscopic characetrization of compound III of lignin peroxidase. Biochemistry 29 (1990), 9617–9623.

    Article  CAS  Google Scholar 

  32. Farrell, R.L., Murtagh, K.E., Tien, M., Mozuch, M.D. and Kirk,T.K.: Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb. Technol. 11 (1989), 322–328.

    Article  CAS  Google Scholar 

  33. Sanglard, D., Leisola, M.S.A. and Fiechter, A.: Role of extracellular ligninases in biodegradtion of benzo(a)pyrene by Phanerochaete chrysosporium. Enzyme Microb. Technol. 8 (1986), 209–212.

    Article  CAS  Google Scholar 

  34. Hammel, K.E., Kalyanaraman, B. and Kirk, T.K.: Oxidation of polycyclic aromatic hydrocarbons and dibenzo(p)dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261 (1986), 16984–16952.

    Google Scholar 

  35. Vazquez-Duhalt, R., Westlake, D.W.S. and Fedorak, P.M.: Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl. Environ. Microbiol. 60 (1994), 459–466.

    CAS  Google Scholar 

  36. Haemmerli, S.D., Leisola, M.S.A., Sanglard, D. and Fiechter, A. 1986. Oxidation of benzo(a)pyrene by extracellular ligninase of Phanerochaete chrysosporium. J. Biol. Chem. 261 (1986), 6900–6903.

    CAS  Google Scholar 

  37. Field, J.A., Vledder, R.H., van Zelst, J.G. and Rulkens, W.H.: The tolerance of lignin peroxidase and manganase-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent:water mixtures. Enzyme Microb. Technol. 18 (1996), 300–308.

    Article  CAS  Google Scholar 

  38. Tatarko, M. and Bumpus, J.A.: Biodegradation of phenethrene by Phanerochaete chrysosporium: on the role of lignin peroxidase. Lett. Appl. Microbiol. 17 (1993), 20–24.

    Article  CAS  Google Scholar 

  39. Hammel, K.E. and Tradone, P.J.: The oxidative 4-dechlorination of polychlorinated phenols is catalized by extracellular fungal lignin peroxidase. Biochemistry 27 (1988), 6563–6568.

    Article  CAS  Google Scholar 

  40. Vazquez-Duhalt, R., Westlake, D.W.S. and Fedorak, P.M.: Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Appl. Microbiol. Biotechnol. 42 (1995), 675–681.

    Article  CAS  Google Scholar 

  41. Gold, M.H., Glenn, J.K. and Alic, M.: Use of polymeric dyes in lignin biodegradation assays. Methods in Enzymology 161 (1988), 74–78.

    Article  CAS  Google Scholar 

  42. Cripps, C., Bumpus, J.A. and Aust, S.D.: Biodegradtion of azo and heterocycle dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56 (1990), 1114–1118.

    CAS  Google Scholar 

  43. Piontek, K., Glumoft, T. and Winterhalter, K.: Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5 A resolution. FEBS Len. 315 (1993), 119–124.

    Article  CAS  Google Scholar 

  44. Gold, M.H. and Alic, M.: Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57 (1993), 605–622.

    CAS  Google Scholar 

  45. Pease, E.A. and Tien, M.: Heterogenity and regulation of manfganese peroxidase from Phanerochaete chrysosporium. J. Bacteriol. 174 (1992), 3532–3540

    CAS  Google Scholar 

  46. Wariishi, H., Akileswaran, L. and Gold, M.H.: Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Spectral characetrization of the oxidized states and the catalytic cycle. Biochemistry 27 (1998), 5365–5370.

    Article  Google Scholar 

  47. Field, J.A., de Jong, E., Feijoo-Costa G. and de Bont J.A.M.: Sceening for ligninolytic fungi applicable to the biodegradtion of xentobiotics. Trends in Biotechnol. 11 (1993)

    Google Scholar 

  48. Popp, J.L. and Kirk, T.K.: Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+. Arch. Biochem. Biophys. 288 (1991), 145–148.

    Article  CAS  Google Scholar 

  49. Moen, M.A. and Hammel, K.E.: Lipid peroxidation by manganese peroxidase of Phanerochaete chrysisporium is the basis for phenenthtrene oxidation by the intact fungus. Appl. Environ. Microbiol. 60 (1994), 1956–1961.

    CAS  Google Scholar 

  50. Bogan, B.W., Lamar, R.T. and Hammel, K.E.: Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl. Environ. Microbio!. 62 (1996), 1788–1792.

    CAS  Google Scholar 

  51. Bogan, B.W., Schoenike, B., Lamar, R.T. and Cullen, D.: Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic hydrocarbons-contaninated soil with Phanerochaete chrysisporium. Appl. Environ. Microbio!. 62 (1996), 2381–2386.

    CAS  Google Scholar 

  52. Bogan, B.W. and Lamar, R.T.: One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbio!. 61 (1995), 2631–2635.

    CAS  Google Scholar 

  53. Kotterman, M.J.J., Wasseveld, R.A. and Field, J.A.: Hydrogen peroxide production as a limiting factor in xentobiotic compound oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55 overproducing peroxidases. Appl. Environ. Microbio!. 62 (1996), 880–885.

    CAS  Google Scholar 

  54. Field, J.A., Vledder, R.H., van Zelst, J.G. and Rulkens, W.H.: The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent: water mixtures. Enzyme Microb. Technol. 18 (1996), 300–308.

    Article  CAS  Google Scholar 

  55. Bogan, B.W. and Lamar, R.T.: Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. App!. Environ. Microbio!. 62 (1996), 15971603.

    Google Scholar 

  56. Coon, M.J., Vaz, A.D.N. and Bestervelt, L.L.: Peroxidative reactions of diversozymes. FASEB J. 10 (1996), 428–434.

    CAS  Google Scholar 

  57. Ortiz de Montellano, P.R.: Cytochrome P450, Structure, Mechanism and Biochemistry. Plenum Press, New York, 1986.

    Google Scholar 

  58. Dawson, J.H. and Sono, M.: Cytochrome P-450 and chloroperoxidase: thiolate-ligated heure enzymes. Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation. Chem. Rev. 87 (1987), 1255–1276.

    Article  CAS  Google Scholar 

  59. Capdevilla, J., Estabrook, R.W and Prough, R.A.: Differences in the mechanism of NADPH- and cumene hydroperoxide supported reactions of cytochrome P-450. Arch. Biochem. Biophys 200 (1980), 186–195.

    Article  Google Scholar 

  60. Dawson, J.H.: Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240 (1988), 433–439.

    Article  CAS  Google Scholar 

  61. Wiseman, A.: Xentobiotic-metabolising cytochrome P-450 from micro-organisms. Trends Biochem. Sci. April (1980), 102–104.

    Google Scholar 

  62. Jones, J.P., Shou, M. and Korzekwa, K.R.: Stereospecific activation of the procarcinogen benzo(a)pyrene: A probe for active site of the cytochrome P450 superfamily. Biochemistry 34 (1995), 6956–6961.

    Article  CAS  Google Scholar 

  63. Dehnen, W., Tomingas, R. and Roos, J.: A modified method for the assay of benzo(a)pyrene hydrolase. Anal. Biochem. 53 (1973), 373–383.

    Article  CAS  Google Scholar 

  64. King, D.J., Azari, M.R. and Wiseman, A.: Studies on the properties og highly purified cytochrome P-448 and its dependent activity benzo(a)pyrene hydrolase, from Saccharomyces cerevisiae. Xenobiotica 14 (1984), 187–206.

    Article  CAS  Google Scholar 

  65. Kelly, S.L., Lamb, D.C., Baldwin, B.C. and Kelly D.E.: Benzo(a)pyrene hydroxylase activity in yeast is mediated by P450 other than sterol 14a-demethylase. Biochem Biophys. Res. Comm. 197 (1993), 428432.

    Google Scholar 

  66. Azari, M.R. and Wiseman, A.: Evaluation of immobilized cytochrome P-448 from Saccharomyces cerevisiae using permeabilized whole cell, microsomal fraction and highly purified reconstituted forms, with benzo(a)pyrene-3-monooxygenase activity. Enzyme Microb. Technol. 4 (1982), 401–404.

    CAS  Google Scholar 

  67. Masaphy, S., Levanon, D., Henis, Y., Venkateswarlu, K. and Kelly, S.L.: Microsomal and cytosolic cytochrome P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius. Biotechnol. Lett. 17 (1995), 969–974.

    Article  Google Scholar 

  68. Koley, A.P., Buters, J.T.M., Robinson, R.C., Markowitz, A. and Friedman, F.K.: Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 lAl: a CO flash photolysis study. Arch. Biochem. Biophys. 336 (1996), 261–267.

    Article  CAS  Google Scholar 

  69. Anzenbacher, P., Niwa, T., Tolbert, L.M., Sirimanne, S.R. and Guengerich, F.P.: Oxidation of 9alkylanthracenes by cytochrome P450 2B1, horseradish peroxidase and iron tetraphenylporphine/ iodosylbenzene systems: anaerobic and aerobic mechanisms. Biochemistry 35 (1996), 2512–2520.

    Article  CAS  Google Scholar 

  70. Rahimtula, A.D., O’Brien, P.J., Seifreid, H.E. and Jerina, D.M.: The mechanism of action of cytochrome P-450. Occurrence of the “NIH shift” during hydroperoxide-dependent aromatic hydroxylations. Eur. J. Biochem. 89 (1988), 133–141.

    Article  Google Scholar 

  71. Shou, M., Krausz, K.W., Gonzalez, F.J. and Gelboin, H.V.: Metabolic activation of the potent carcinogen dibenzo(a,1)pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis 17 (1995), 2429–2436.

    Article  Google Scholar 

  72. Backes, W.L., Hogaboom, M. and Canady, W.J.: The true hydrophobicity of microsomal cytochrome P450 in the rat. J. Biol. Chem. 257 (1982), 4063–4070.

    CAS  Google Scholar 

  73. Backes, W.L., Cawley, G., Eyer, C.S., Means, M., Causey, K.M. and Canady, W.J.: Aromatic hydrocarbon binding to cytochrome P450 and other enzyme binding sites: Are hydrophobic compounds drawn into the active site or pushed from the aqueous phase. Arch. Biochem. Biophys. 304 (1993), 27–37.

    Article  CAS  Google Scholar 

  74. Fowler, S.M., England, P.A., Westlake, A.C,G., Rouch, D.R., Nickerson, D.P., Blunt, C., Braybrook, D., West, S., Wong, L.L. and Flitsch, S.L.: Cytochrome P-450cam monooxygenase can be redesigned to catalyse the regioselective aromatic hydroxylation of diphenylmethane. J. Chem. Soc. Chem. Commun. (1994), 2761–2762.

    Google Scholar 

  75. Modi, S., Primrose, W.U., Lian, L.Y. and Roberts, G.C.K.: Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem J. 310 (1995), 939–943.

    Google Scholar 

  76. Margoliash, E. and Schejter, A.: Cytochrome c. Adv. Protein Chem. 21 (1966), 113–286.

    Article  CAS  Google Scholar 

  77. Pettigrew, G.W. and Moore, G.R.: Cytochromes c. Biological Aspects. Springer-Verlag, Berlin, 1987.

    Book  Google Scholar 

  78. Scott, R.A. and A. Mauk, G.: Cytochrome c: A multidisciplinary approach. University Science Books. Sausalito, CA., 1995.

    Google Scholar 

  79. Dickerson, R.E.: in The Evolution of Protein Structure and Function. Academic Press, New York, 1980, 173–202.

    Google Scholar 

  80. Tappel, A.L.: Arch. Biochem. Biophys. 44 (1955), 368–395.

    Google Scholar 

  81. Florence, T.M.J.: Inorg. Biochem. 23 1985 ), 131–141.

    Article  CAS  Google Scholar 

  82. Harel, S. and Kanner, J.: Free Radic. Res. Commun. 5 (1988), 21–33.

    Article  CAS  Google Scholar 

  83. Radi, R., Thomson, L., Rubbo, H. and Prodanov, E.: Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch. Biochem. Biophys. 288 (1991), 112–117.

    Article  CAS  Google Scholar 

  84. Fujita, A., Senzu, H., Kunitake, T. and Hamachi, I.: Enhanced peroxidase activity of cytochrome c by phosphate bilayer membrane. Chem. Lett. (1994), 1219–1222.

    Google Scholar 

  85. Vazquez-Duhalt, R., Semple, K.M., Westlake, D.W.S. and Fedorak, P.M.: Effect of water-miscible organic solvents on the catalytic activity of cytochrome c. Enzyme Microb. Technol. 15 (1993), 936–943.

    Article  CAS  Google Scholar 

  86. Mauk, A.G.: Electron transfer in genetically engineered proteins. The cytochrome c paradigm. Struct. Bonding 75 (1991), 131–157.

    Google Scholar 

  87. Fumo, G., Spitzer, J.S. and Fetrow, J.S.: A method of directed random mutagenesis of the yeast chromosome shows that the iso-l-cytochrome c heure ligand His18 is essential. Gene 164 (1995), 33–39.

    Article  CAS  Google Scholar 

  88. Vazquez-Duhalt, R., Torres, E. and Tinoco, R.: in: In Situ and On-site Bioremediation. Vol. 12, Battelle Press. Columbus, Ohio, 225–230, 1997.

    Google Scholar 

  89. Tinoco, R. and Vazquez-Duhalt, R.: Chemical modification of cytochrome c improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons. Enzyme Microb. Technol. (in press).

    Google Scholar 

  90. Ban, D.P. and Mason, R.P.: Mechanism of radical production from reaction of cytochrome c with organic hydroperoxides. J. Biol. Chem. 270 (1995), 12709–12716.

    Article  Google Scholar 

  91. Cadenas E., Boveris A. and Chance B.: Low-level chemiluminescence of hydroperoxide-supplemented cytochrome c. Biochem. J. 187 (1980), 131–140.

    CAS  Google Scholar 

  92. Davies, M.J.: Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy. Biochem. Biophys. Acta 28 (1988), 28–35.

    Google Scholar 

  93. Mieyal, J.J., Ackerman, R.S., Blumer, J.L. and Freeman, L.S.: Characterization of enzyme-like activity of human hemoglobin. J. Biol. Chem. 251 (1976), 3436–3441.

    CAS  Google Scholar 

  94. Yoshida, Y, Kashiba, K and Niki, E.: Free radical-mediated oxidation of lipids induced by hemoglobin in aqueous dispersions. Biochim. Biophys. Acta 1201 (1994), 165–172.

    Article  CAS  Google Scholar 

  95. Kedderis, G.L., Rickert, D.E., Pandey, R.N. and Hollenberg, P.F.: ‘80 studies of the peroxidase-catalyzed oxidation of N-methylcarbazole. J. Biol. Chem. 261 (1986) 15910–15914.

    Google Scholar 

  96. Winterbourn, C.C., French, J.K. and Claridge, R.F.C.: The reaction of menadione with haemoglobin. Biochem. J. 179 (1979), 665–673.

    CAS  Google Scholar 

  97. Giulivi, C. and Davies, K.J.A.: A novel antioxidant role for hemoglobin. J. Biol. Chem. 265 (1990), 19453–19460.

    CAS  Google Scholar 

  98. Thornalley, P.J., Trotta, R.J. and Stem, A.: Free radical involvment in the oxidative phenomena induced by ter-butyl-hydroperoxide in erythrocytes. Biochim. Biophys. Acta 759 (1983), 16–22.

    Article  CAS  Google Scholar 

  99. Durant, J.L., Busby, W.F., Lafleur, A.L., Penman, B.W. and Crespi, C.L.: Human cell mutagenecity of oxigenated, nitred and unsubstitued polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Res. 371 (1996), 123–157.

    Article  CAS  Google Scholar 

  100. Torres, E., Tinoco, R. and Vazquez-Duhalt, R.: Solvent hydrophobicity predicts biocatalytic behaviour of lignin peroxidase and cytochrome c in aqueous solution of water-miscible organic solvents. J. Biotechnol. 49 (1996), 59–67.

    Article  CAS  Google Scholar 

  101. Male, K.B., Brown, R.S. and Luong, J.H.T.: Enzymatic oxidation of water-soluble cyclodextrinpolynuclear aromatic hydrocarbon inclusion complexes using lignin peroxidase. Enzyme Microb., Technol. 17 (1995), 607–614.

    CAS  Google Scholar 

  102. DePillis G.D., Ozak S., Kuo J.M., Maltby D.A. and Ortiz de Montellano P.R.: Autocatalytic processing of heme by lactoperoxidase produces the active protein-bond prosthetic group. J. Biol. Chem. 272 (1997), 8857–8860.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vazquez-Duhalt, R. (1998). Hemoproteins as Biocatalysts for the Oxidation of Polycyclic Aromatic Hydrocarbons. In: Galindo, E., Ramírez, O.T. (eds) Advances in Bioprocess Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0643-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0643-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4987-2

  • Online ISBN: 978-94-017-0643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics