Advertisement

Novel Processes for the Enzymatic Synthesis of Surfactants

Chapter
  • 207 Downloads

Abstract

On an industrial level, enzymes are mostly used to catalyze the hydrolytic degradation of biopolymers (starch, proteins, etc.). However, more and more applications of enzymes to the catalysis of synthesis reactions have been developed during the past ten years [1, 2].

Keywords

Enzymatic Synthesis Synthesis Reaction Immobilize Lipase Fatty Amide Amino Acid Amide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cabral, J.M.S., Best, D., Boross, L., and Tramper, J.: Applied Biocatalysis, Harwood Academic Publishers, Chur, 1994.Google Scholar
  2. 2.
    Monsan, P., Paul, F., and Auriol, D.: New developments in the application of enzymes to synthesis reactions: peptides and oligosaccharides, Ann. New York Acad. Sci 750 (1995), 357–363.CrossRefGoogle Scholar
  3. 3.
    Hauthal, H.G.: Trends in surfactants, Chim.Oggi 10 (1992), 9–13.Google Scholar
  4. 4.
    Knaut, J., and Kreienfeld, G.: Alkyl polyglucosides: a new surfactant class based on renewable raw material, Chim.Oggi 9 (1991), 41–46.Google Scholar
  5. 5.
    Nieendick, C., and Schmid, K.H.: Alkyl glucosides, a new generation of surfactants for the use in manual dishwashing agents, Agro-food Industry Hi-Tech 5 (1995), 27–30.Google Scholar
  6. 6.
    Sugawara, S., Nakamura, Y., and Shimomura, T.: Transglucosidation action of crystalline mold maltase. Part I. Transfer of glucose from a-heteroside to alcohols and sugars, Bull.Agric.Chem.Soc.Jpn 24 (1960), 278–280.CrossRefGoogle Scholar
  7. 7.
    Pazur, J.H., and Ando, T.: The isolation and the mode of action of a fungal transglucosylase, Arch.Biochem.Biophys 93 (1961), 43–49.CrossRefGoogle Scholar
  8. 8.
    Vulfson, E.N., Patel, R., Law, B.A.: Alkyl- 13-glucoside synthesis in a water-organic two-phase system. Biotechnol.Lett 12 (1990), 397–402.CrossRefGoogle Scholar
  9. 9.
    Vic, G., and Thomas, D.: Enzyme-catalyzed synthesis of alkyl 3-D-glucosides in organic media. Tetrahedron Lett. 33 (1992), 4567–4570.CrossRefGoogle Scholar
  10. 10.
    Ljunger, G., Adlercreutz, P., and Mattiasson, B.: Enzymatic synthesis of octyl- 13-glucoside in octanol at controlled water activity, Enzyme Microb.Technol 16 (1994), 751–755.CrossRefGoogle Scholar
  11. 11.
    Björkling, F., Godtfredsen, S.E., and Kirk, O.: A highly selective enzyme-catalyzed esterification of simple glucosides, J.Chem.Soc. Chem. Commun. 14 (1989), 934–935.Google Scholar
  12. 12.
    Kirk, O., Björkling, F., and Godtfredsen, S.E.: Esters of glycosides and a process for enzymatic preparation thereof, International Patent Application No WO 89 /0 1480.Google Scholar
  13. 13.
    David, M.-H.L., Lemmens, H.O.J., Günther, H., and Röper, H.W.: Surface active compounds and a process for their preparation, European Patent Application (1989), No O, 334, 498.Google Scholar
  14. 14.
    Hills, G.A., Macrae, A.R., and Poulina, R.R.: Ester preparation, European Patent Application (1990), No O, 383, 405.Google Scholar
  15. 15.
    Philippe, M.: Procédé de préparation par voie enzymatique de monoesters en position 6 du glucopyranoside de méthyle, French Patent Application (1992), No 92/03811.Google Scholar
  16. 16.
    De Goede, A.T.J.W., Woudenberg-Van Oosterom, M., and Van Rantwijk, F.: Selective lipase-catalyzed esterification of carbohydrates, Carbohydr. Eur 10 (1994), 18–20.Google Scholar
  17. 17.
    Sekiguchi, S., Yasumasu, T., Miyake, H., and Endo, Y.: Nonionic surface active agent, United States Patent (1992) No 5, 109, 127.Google Scholar
  18. 18.
    Pelenc, V., Paul, F., and Monsan, P.: Enzymatic stereospecific production of a-glucosides from starch by reaction with alcohol in the presence of a-transglucosidase and optionally conversion to a-butyl glucoside ester using a lipase, International Patent Application (1993), No WO 93/04185.Google Scholar
  19. 19.
    Pazur, J.H., and French, D.: The transglucosidase of Aspergillus oryzae, J.Am.Chem.Soc 73 (1951), 3536.CrossRefGoogle Scholar
  20. 20.
    Pan, S.C., Nicholson, L.W., and Kohachov, P.: Isolation of a crystalline trisaccharide from the unfermentable carbohydrate produced enzymically from maltose, J.Am.Chem.Soc 73 (1951), 2547–2550.CrossRefGoogle Scholar
  21. 21.
    McCleary, B.V., and Gibson, T.S.: Purification, properties, and industrial significance of transglucosidase from Aspergillus niger, Carbohydr.Res 185 (1989), 147–162.CrossRefGoogle Scholar
  22. 22.
    Monsan, P.F., Paul, F., Pelenc, V., and Boures, E.: Enzymatic production of a-butyl glucoside and its fatty acid esters, Ann.New York Acad.Sci 799 (1996), 633–641.CrossRefGoogle Scholar
  23. 23.
    Ghatorae, A.S., Bell, G., and Halling, P.J.: Inactivation of enzymes by organic solvents: new technique with well-defined interfacial area, Biotechnol.Bioeng 43 (1994), 331–336.CrossRefGoogle Scholar
  24. 24.
    Hildreth, J.: N-D-Gluco-N-methylalkanamide compounds, a new class of non-ionic detergents for membrane biochemistry, Biochem.J 207 (1982), 363–366.Google Scholar
  25. 25.
    Hildreth, J.: Amphipathic compounds, International Patent Application (1983), No WO 83/04412.Google Scholar
  26. 26.
    Matos, J.R., Blair West, J., and Wong, C.H.: Lipase catalyzed synthesis of peptides: preparation of a Penicillin G precursor and other peptides, Biotechnol.Lett 9 (1987), 233–236.Google Scholar
  27. 27.
    Inada, Y., Nishimura, H., Takahashi, K., Yoshimoto, T., Ranjan Saha, A., and Saito, Y.: Ester synthesis catalyzed by polyethylene glycol modified lipase in benzene, Biochem.Biophys.Res.Comm 122 (1984), 845–850.CrossRefGoogle Scholar
  28. 28.
    Zacks, A., and Klibanov, A.M.: Enzyme catalyzed processes in organic solvents, Proc.Natl.Acad.Sci.USA 82 (1985), 3192–3196.CrossRefGoogle Scholar
  29. 29.
    Margolin, A.L., and Klibanov, A.M.: Peptide synthesis catalyzed by lipases in anhydrous organic solvents, J.Am.Chem.Soc 109 (1987), 3802–3804.CrossRefGoogle Scholar
  30. 30.
    West, J.B., and Wong, C.H.: Use of nonproteases in peptide synthesis, Tetrahedron Lett. 28 (1987), 1629–1632.CrossRefGoogle Scholar
  31. 31.
    Montet, D., Pina, M., Graille, J., Renard, G., and Grimaud, J.: Synthesis of N-Lauryloleyl-amide by the Mucor miehei Lipase in an Organic medium, Fat.Sci.Technol 1 (1989), 14–18.Google Scholar
  32. 32.
    Bistline, G., Bilik, A., and Fearheller, S.H.: Lipase catalyzed formation of fatty amides, J.Am.Oil Chem.Soc. 68 (1991), 95–98.CrossRefGoogle Scholar
  33. 33.
    Tuccio, B., and Comeau, L.: Lipase-catalyzed synthesis of N-octyl-alkylamides in organic media, Tetrahedron Lett. 32 (1991), 2763–2764.CrossRefGoogle Scholar
  34. Montet, D., Servat, F., Graille, J., Pina, M., Grimaud, J., Galzy, P., and Arnaud, A.: Enzymatic synthesis of N-epsilon-acyllysines, J.Am.Oil Chem.Soc 67 (1990), 771–774.Google Scholar
  35. 35.
    Godtfredsen, S., and Björkling, F.: An enzyme catalyzed process for preparing N-acyl amino acids and N-acyl amino acid amides, International Patent Application (1990), No WO 90/14429.Google Scholar
  36. 36.
    Montet, D., Graille, J., Servat, F., Renard, G., and Marcou, I.: Study of the acylation of aminopropanols catalysed by acyltransferases, Rev.Fr.Corps Gras 2 (1989), 79–83.Google Scholar
  37. 37.
    Maugard, T., Remaud-Siméon, M., Pétré, D., and Monsan, P.: Lipase-catalyzed chemoselective N-acylation of amino-sugar derivatives in hydrophobic solvent: acid-amine ion-pair effects, Tetrahedron 53 (1997), 7587–7594.CrossRefGoogle Scholar
  38. 38.
    Ducret, A., Giroux, A., Trani, M., and Lortie, R.: Enzymatic preparation of biosurfactants from sugars or sugar alcohols and fatty acids in organic media under reduced pressure, Biotechnol.Bioeng 48 (1995), 214–221.CrossRefGoogle Scholar
  39. 39.
    Maugard, T., Remaud-Siméon, M., Pétré, D., and Monsan, P.: Enzymatic synthesis of glycamide surfactants by amidification reaction, Tetrahedron 53 (1997), 5185–5194.CrossRefGoogle Scholar
  40. 40.
    Maugard, T., Remaud-Siméon, M., Pétré, D., and Monsan, P.: Lipase-catalyzed synthesis of biosurfactants by transacylation of N-methyl-glucamine and fatty-acid methyl esters, Tetrahedron 53 (1997), 7629–7634.CrossRefGoogle Scholar
  41. 41.
    Maugard, T., Monsan, P., Pétré, D., Remaud-Siméon, M.: Synthèse d’amines hydroxylées N-acylées, French Patent Application (1996), No 96 15325.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  1. 1.Centre de Bioingénierie Gilbert Durand. Département de Génie Biochimique et Alimentaire. UMR CNRS 5504. LA INRA Complexe Scientifique de RangueilInstitut National des Sciences AppliquéesToulouse Cedex 4France

Personalised recommendations