Skip to main content

A New Approach for Modelling the Kinetics of Mycelial Cultures

  • Chapter

Abstract

A new approach for modelling the kinetics of mycelial cultures is presented It involves the estimation of the microscopic branching frequency in terms of the rate of mycelial tip elongation and the critical length of mycelial leading segments. Branching frequency was then related to the macroscopic specific growth rate. Two models for estimating the braching frequency (zero and first order) as a function of segment length, were considered. Simultaneous predictions of the observed values of specific growth rates and critical branching lengths were made in order to compare those models. Also, a macroscopic kinetic expression for the evolution of a mycelial culture was developed, based in terms of a self inhibiting power function of biomass density. Such an expression was used to test the zero and first order models for predicting mycelial growth. Results indicated that the first order model was the more adequate one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bartnicki-García, S., F. Hegert and G. Gierz, Protoplasma, 153, 46 (1989).

    Google Scholar 

  2. 2. -Bartnicki-Garcia, S. In “Tip growth in plant and fungal cells” (I.B. Heath editor). Academic Press,Cal. USA (1990).

    Google Scholar 

  3. Trinci, A.P.J., Journal of General Microbiology 57, 11 (1969).

    Article  PubMed  CAS  Google Scholar 

  4. Trinci, A.P.J., Journal of General Microbiology 67, 325 (1971).

    Article  Google Scholar 

  5. Trinci, A.P.J., Journal of General Microbiology 81, 225 (1974).

    Article  PubMed  CAS  Google Scholar 

  6. Prosser, J.I. and A.P.J. Trinci, Journal of General Microbiology 111, 153 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. Packer, J.I. and C.R. Thomas, Biotechnol. Bioeng. 35, 870 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. Thomas, C.R., J. Chem. Tech 56 (2), 204 (1993).

    Google Scholar 

  9. Viniegra-Gonzâlez, G., G. Saucedo-Castaneda, F. López-Isunza and E. Favela-Torres, Biotechnol. Bioeng. 42, 1 (1993).

    Article  PubMed  Google Scholar 

  10. Katz, D., D. Goldstein and R.F. Rosenberger, J. Bacteriol. 109 (3), 1097 (1972).

    PubMed  CAS  Google Scholar 

  11. Gonzâlez-Blanco, P.C., C.P. Larralde-Corona and G. ViniegraGonzalez, Biotechnology Techniques 7 (1), 57 (1993).

    Article  Google Scholar 

  12. Larralde-Corona, C.P., “Acoplamiento energético en la germinación de Aspergillus niger CH4”, M. Sc. Thesis. on Chem. Eng. Universidad Autonoma MetropolitanaIztapalapa, D.F. México (1992)

    Google Scholar 

  13. Larralde-Corona, C.P., P.C. Gonzâlez-Blanco and G. ViniegraGonzalez, Biotechnology Techniques 8 (4), 261 (1994).

    Article  CAS  Google Scholar 

  14. Bertalanffy, L. von, Quart. Rev. Biol. 32, 217 (1957).

    Article  Google Scholar 

  15. Aynsley, M., A.C. Ward and A.R. Wright, Biotechnol. Bioeng. 35, 820 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. Nielsen, J., Adv. Biochem. Eng. & Biotech, 46, 187 (1992).

    CAS  Google Scholar 

  17. Yang, H., U. Reichl, R. King and E.D. Gilles, Biotechnol. Bioeng., 39, 44 (1992a).

    Article  PubMed  CAS  Google Scholar 

  18. Yang, H., R. King, U. Reichl, and E.D. Gilles, Biotechnol. Bioeng., 39, 49 (1992b).

    Article  PubMed  CAS  Google Scholar 

  19. Richards, F.J., J. Exp. Botany, 10 (19): 290 (1959).

    Article  Google Scholar 

  20. Mulchandani, A., J.H. Luong and A. Leduy, Biotechnol. Bioeng. 32, 639 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. Oriol, E., These de Doctorat. Univ. P. Sabatier, Toulouse, France (1988).

    Google Scholar 

  22. Raimbault, M., These de Doctorat dӃtat. Univ. P. Sabatier, Tolouse, France (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Viniegra-González, G., Larralde-Corona, C.P., López-Isunza, F. (1994). A New Approach for Modelling the Kinetics of Mycelial Cultures. In: Galindo, E., Ramírez, O.T. (eds) Advances in Bioprocess Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0641-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0641-4_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4459-4

  • Online ISBN: 978-94-017-0641-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics