Skip to main content

Modeling Quantum Resonances: I. Dynamics of Interacting Resonances

  • Conference paper
Advanced Topics in Theoretical Chemical Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 12))

  • 296 Accesses

Abstract

The wave operator theory of quantum dynamics is reviewed and applied to the study of line profiles and to the determination of the dynamics of interacting resonances. New exact energy-dependent effective Hamiltonians are derived from a model Hamiltonian describing several resonances interacting with several continua. These effective Hamiltonians are especially relevant for describing and understanding the physics near the energy thresholds of decaying channels. The applications underline the relevance of investigating simultaneously spectroscopy (line profiles) and the dynamics (transition probabilities) by means of effective Hamiltonians. The physics of a discrete state coupled to a finite-width continuum is revisited. A novel model study of giant resonances is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  CAS  Google Scholar 

  2. U. Fano and J. W. Cooper, Phys. Rev. 137, A1364 (1965).

    Article  Google Scholar 

  3. F. H. Mies, Phys. Rev. 175, 164 (1968).

    Article  CAS  Google Scholar 

  4. F. H. Mies and M. Krauss, J. Chem. Phys. 45, 4455 (1966).

    Article  CAS  Google Scholar 

  5. M. Bixon and J. Jortner, Mol. Phys. 17, 109 (1969).

    Article  CAS  Google Scholar 

  6. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).

    CAS  Google Scholar 

  7. Ph. Durand and I. Paidarová, Phys. Rev. A 58, 1867 (1998).

    Article  CAS  Google Scholar 

  8. V. I. Kukulin, V. M. Krasnopol’sky, and J. Horáëek, Theory of Resonances: Principles and Applications ( Academia, Praha 1989 ).

    Google Scholar 

  9. C. Cohen-Tannoudji, 3. Dupont-Roe, and G. Grynberg, Atom-Photon Interactions; Basic Processes and Applications (J. Wiley, New York 1992) [first edition, InterEditions and Editions du CNRS, 1988 ].

    Google Scholar 

  10. Ph. Durand and J.-P. Malrieu, in Ab Initio Methods in Quantum Chemistry I, edited by K. P. Lawley ( J. Wiley, New York, 1987 ), p. 352.

    Google Scholar 

  11. R. Levine, Quantum Mechanics of Molecular Rate Processes ( Clarendon Press, Oxford 1969 ).

    Google Scholar 

  12. M. Desouter-Lecomte, J. Liévin and V. Brems, J. Chem. Phys. 103, 4524 (1995).

    Article  CAS  Google Scholar 

  13. V. Brems, M. Desouter-Lecomte and J. Liévin, J. Chem. Phys. 104, 2222 (1996).

    Article  CAS  Google Scholar 

  14. M. Desoater-Lecomte and J. Liévin, J. Chem. Phys. 107, 1428 (1997).

    Article  Google Scholar 

  15. V. Brems and M. Desouter-Lecomte, J. Chem. Phys. 116, 8318 (2002).

    Article  CAS  Google Scholar 

  16. I. Paidarová and Ph. Durand Collect. Czech. Chem. Commun. 68, 529 (2003).

    Google Scholar 

  17. Jolicard, Annu. Rev. Phys. Chem. 46, 83 (1995).

    Article  CAS  Google Scholar 

  18. W. Domcke, Phys. Rep. 208, 97 (1991).

    Article  Google Scholar 

  19. C. Mahaux and H. A. Weidenmüller, Shell Model Approach to Nuclear Reactions ( North-Holland, Amsterdam, 1969 ).

    Google Scholar 

  20. J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirnbauer, Phys. Rep. 129, 369 (1985).

    Article  Google Scholar 

  21. M. Desouter-Lecomte and V. Jacques, J. Phys. B: At. Mol. Opt. Phys. 28, 3225 (1995).

    Article  CAS  Google Scholar 

  22. M. Muller, F-M. Dittes, W. Iskra, and I. Rotter, Phys. Rev. E 52, 5961 (1995).

    Article  Google Scholar 

  23. P. von Brentano, Phys. Rep. 264, 57 (1996).

    Article  Google Scholar 

  24. Ph. Durand, I. Paidarová, and F. X. Gadéa, J. Phys. B: At. Mol. Opt. Phys. 34, 1953 (2001).

    Article  CAS  Google Scholar 

  25. Ph. Durand, I. Paidarová, J. Phys. B: At. Mol. Opt. Phys. 35, 469 (2002).

    Article  CAS  Google Scholar 

  26. J. Okolowicz, N. Ploszajczak and I. Rotter, Phys. Rep. 374, 271 (2003).

    Article  CAS  Google Scholar 

  27. G. Jolicard and 0. Atabek, J. Chem. Phys. 93, 4750 (1990).

    CAS  Google Scholar 

  28. M. Thoss and W. Domcke, J. Chem. Phys. 109, 6577 (1998).

    Article  CAS  Google Scholar 

  29. C. Jolicard and J. Humbert, Comput. Phys. Commun. 63, 216 (1991).

    Article  CAS  Google Scholar 

  30. J-P. Connerade and A. M. Lane, Rep. Prog. Phys. 51, 1439 (1988).

    Article  CAS  Google Scholar 

  31. M. Y. Amusia and J-P Connerade, Rep. Prog. Phys. 63, 41 (2000).

    Article  CAS  Google Scholar 

  32. I. G. Kaplan, Czech. J. Phys. 48, 763 (1998).

    Article  CAS  Google Scholar 

  33. C. Kittel, Introduction to Solid State Physics ( Wiley, New York, 1966 ).

    Google Scholar 

  34. E. Narevicius and N. Moiseyev, J. Chem. Phys. 113, 6088 (2000).

    Article  CAS  Google Scholar 

  35. F. Gemperle and F. X. Gadéa, J. Chem. Phys. 110, 11197 (1999).

    Article  CAS  Google Scholar 

  36. Ph. Durand, I. Paidarová, 0. Jolicard, and F. Gemperle, J. Chem. Phys. 112, 7363 (2000).

    Article  CAS  Google Scholar 

  37. F. X. Gadéa, Ph. Durand, T. González-Lezana, G. Delgado-Barrio, and P. Villareal, Eur. Phys. J. D 15, 215 (2001).

    Article  Google Scholar 

  38. I. Prigogine, From Being to Becoming ( Freeman and Company, New York, 1980 ), p. 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Paidarová, I., Durand, P. (2003). Modeling Quantum Resonances: I. Dynamics of Interacting Resonances. In: Maruani, J., Lefebvre, R., Brändas, E.J. (eds) Advanced Topics in Theoretical Chemical Physics. Progress in Theoretical Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0635-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0635-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6401-1

  • Online ISBN: 978-94-017-0635-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics