Skip to main content

New Alternatives for Electronic Structure Calculations: Renormalized, Extended, and Generalized Coupled-Cluster Theories

  • Conference paper
Advanced Topics in Theoretical Chemical Physics

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 12))

Abstract

New single-reference coupled-cluster (CC) methods that can be applied to quasi-degenerate electronic states and molecular potential energy surfaces involving bond breaking and that can provide the virtually exact results for many-electron systems are reviewed. Three types of approaches are discussed: (i) the renormalized CC methods, which represent the approximate variants of the more general formalism of the method of moments of coupled-cluster equations (MMCC), (ii) the extended CC (ECC) methods, and (iii) the generalized CC (GCC) theory, in which many-electron wave functions are represented by the exponential cluster expansions involving general two-body operators. The main idea of the renormalized CC and other MMCC theories is that of the noniterative energy corrections which, when added to the energies obtained in the standard CC calculations, such as CCSD (CC singles and doubles), recover the exact or virtually exact energies. It is demonstrated that the completely renormalized CCSD(T) and CCSD(TQ) methods and their quadratic MMCC analogs represent “blackbox” approaches, which are capable of removing the failing of the standard CCSD, CCSD(T), and similar methods at larger internuclear separations. The ECC methods, in which products involving low-order cluster components mimic the effects of higher-order clusters, are based on the idea of optimizing two cluster operators. It is shown that the ECC methods with singles and doubles (ECCSD), including the quadratic and bilinear ECCSD theories, provide great improvements in the poor description of multiple bond breaking by the standard CC approaches. Finally, we provide strong arguments that the GCC theory may represent the exact many-body formalism. This result may have a significant impact on future quantum calcalatems for many-electron and other pairwise interacting many-fermion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Coester, Nucl. Phys. 7, 421 (1958).

    Google Scholar 

  2. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).

    CAS  Google Scholar 

  3. J. Cfek, J. Chem. Phys. 45, 4256 (1966).

    Google Scholar 

  4. J. Ciek, Adv. Chem. Phys. 14, 35 (1969).

    Google Scholar 

  5. J. CIek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).

    Google Scholar 

  6. Paldus, in: Methods in Computational Molecular Physics, NATO Advanced Study Institute, Series B: Physics, Vol. 293, edited by S. Wilson and G.H.F. Diercksen ( Plenum Press, New York, 1992 ), pp. 99–194.

    Google Scholar 

  7. R.J. Bartlett, in: Modern Electronic Structure Theory, Part I, edited by D.R. Yarkony (World Scientific, Singapore, 1995 ), pp. 1047–1131.

    Google Scholar 

  8. T.J. Lee and G.E. Scuseria, in: Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S.R. Langhoff ( Kluwer, Dordrecht, 1995 ), pp. 47–108.

    Google Scholar 

  9. J. Paldus and X. Li, Adv. Chem. Phys. 110, 1 (1999).

    CAS  Google Scholar 

  10. T.D. Crawford and H.F. Schaefer III, Rev. Comp. Chem. 14, 33 (2000).

    CAS  Google Scholar 

  11. P. Piecuch and K. Kowalski, in: Computational Chemistry: Reviews of Current Trends, edited by J. Leszczyflski ( World Scientific, Singapore, 2000 ), Vol. 5, pp. 1–104.

    Google Scholar 

  12. P. Piecuch, K. Kowalski, I.S.O. Pimienta, and S.A. Kucharski, in: Low-Lying Potential Energy Surfaces, ACS Symposium Series, Vol. 828, edited by M.R. Hoff- mann and K.G. Dyall (American Chemican Society, Washington, D.C., 2002), pp. 3 1–64.

    Google Scholar 

  13. P. Piecuch, K. Kowaiski, I.S.O. Pimienta, and M.J. McGuire, Int. Rev. Phys. Chem. 21, 527 (2002).

    CAS  Google Scholar 

  14. G.D. Purvis III and R.J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

    CAS  Google Scholar 

  15. M. Urban, J. Noga, S.J. Cole, and R.J. Bartlett, J. Chem. Phys. 83, 4041 (1985).

    CAS  Google Scholar 

  16. K. Raghavachari, G.W. Trucks, J.A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).

    CAS  Google Scholar 

  17. G.E. Scuseria, A.C. Schemer, T.J. Lee, J.E. Rice, and H.F. Schaefer III, J. Chem. Phys. 86, 2881 (1987).

    CAS  Google Scholar 

  18. G.E. Scuseria, C.L. Janssen, and H.F. Schaefer III, J. Chem. Phys. 89, 7382 (1988).

    CAS  Google Scholar 

  19. T.J. Lee and J.E. Rice, Chem. Phys. Lett. 150, 406 (1988).

    CAS  Google Scholar 

  20. P. Piecuch and J. Paldus, Int. J. Quantum Chem. 36, 429 (1989).

    CAS  Google Scholar 

  21. P. Piecuch and J. Paldus, Theor. Chim. Acta 78, 65 (1990).

    CAS  Google Scholar 

  22. P. Piecuch, R. Tobola, and 3. Paldus, mt. J. Quantum Chem. 55, 133 (1995).

    CAS  Google Scholar 

  23. S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. 108, 9221 (1998).

    CAS  Google Scholar 

  24. W.D. Laidig, P. Saxe, and R.J. Bartlett, J. Chem. Phys. 86, 887 (1987).

    CAS  Google Scholar 

  25. K.B. Ghose, P. Piecuch, and L. Adamowicz, J. Chem. Phys. 103, 9331 (1995).

    CAS  Google Scholar 

  26. P. Piecuch, V. pirko, A.E. Kondo, and J. Paldus, J. Chem. Phys. 104, 4699 (1996).

    CAS  Google Scholar 

  27. L. Adamowicz, P. Piecuch, and K.B. Ghose, Mol. Phys. 94, 225 (1998).

    CAS  Google Scholar 

  28. P. Piecuch, S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys. 110, 6103 (1999).

    CAS  Google Scholar 

  29. P. Piecuch, S.A. Kucharski, and V. Spirko, J. Chem. Phys. 111, 6679 (1999).

    CAS  Google Scholar 

  30. K. Kowaiski and P. Piecuch, J. Chem. Phys. 113, 18 (2000).

    Google Scholar 

  31. K. Kowaiski and P. Piecuch, J. Chem. Phys. 113, 5644 (2000).

    Google Scholar 

  32. K. Kowaiski and P. Piecuch, J. Mol. Struct.: THEOCHEM 547, 191 (2001).

    Google Scholar 

  33. K. Kowalski and P. Piecuch, Chem. Phys. Lett. 344, 165 (2001).

    CAS  Google Scholar 

  34. P. Piecuch, S.A. Kucharski, and K. Kowalski, Chem. Phys. Lett. 344, 176 (2001).

    CAS  Google Scholar 

  35. P. Piecuch, S.A. Kucharski, V. Spirko, and K. Kowalski, J. Chem. Phys. 115, 5796 (2001).

    CAS  Google Scholar 

  36. P. Piecuch, K. Kowalski, and I.S.O. Pimienta, mt. J. Mol. Sci. 3, 475 (2002).

    CAS  Google Scholar 

  37. M.J. McGuire, K. Kowaiski, and P. Piecuch, J. Chem. Phys. 117, 3617 (2002).

    CAS  Google Scholar 

  38. Y.S. Lee and R.J. Bartlett, J. Chem. Phys. 80, 4371 (1984).

    CAS  Google Scholar 

  39. Y.S. Lee, S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys. 81, 5906 (1984); ibid. 82, 5761 (1985) (Erratum).

    Google Scholar 

  40. Noga, R.J. Bartlett, and M. Urban, Chem. Phys. Lett. 134, 126 (1987).

    Google Scholar 

  41. G.W. Trucks, 3. Noga, and R. J. Bartlett, Chem. Phys. Lett. 145, 548 (1988).

    CAS  Google Scholar 

  42. S.A. Kucharski and R.J. Bartlett, Chem. Phys. Lett. 158, 550 (1989).

    CAS  Google Scholar 

  43. J. Noga and R.J. Bartlett, J. Chem. Phys. 86, 7041 (1987); ibid. 89, 3401 (1988) (Erratum).

    Google Scholar 

  44. G.E. Scuseria and H.F. Schaefer III, Chern. Phys. Lett. 152, 382 (1988).

    CAS  Google Scholar 

  45. S.A. Kucharski and R.J. Bartlett, Theor. Chim. Acta 80, 387 (1991).

    CAS  Google Scholar 

  46. S.A. Kucharski and R.J. Bartlett, J. Chem. Phy. 97, 4282 (1992).

    CAS  Google Scholar 

  47. N. Oliphant and L. Adamowicz, J. Chem. Phys. 95, 6645 (1991).

    CAS  Google Scholar 

  48. P. Piecuch and L. Adamowicz, J. Chem. Phys. 100, 5792 (1994).

    CAS  Google Scholar 

  49. M. Musial, S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys. 116, 4382 (2002).

    CAS  Google Scholar 

  50. P. Pulay, Chem. Phys. Lett. 100, 151 (1983).

    CAS  Google Scholar 

  51. S. Saebø and P. Pulay, Chem. Phys. Lett. 113, 13 (1985).

    Google Scholar 

  52. S. Saebø and P. Pulay, Annu. Rev. Phys. Chem. 44, 213 (1993).

    Google Scholar 

  53. M. Schütz, J. Chem. Phys. 113, 9986 (2000).

    Google Scholar 

  54. M. SchUtz and H.-J. Werner, Chem. Phys. Lett. 318, 370 (2000).

    CAS  Google Scholar 

  55. M. Schütz, J. Chern. Phys. 116, 8772 (2002).

    Google Scholar 

  56. A.I. Krylov, Chem. Phys. Lett. 338, 375 (2001).

    CAS  Google Scholar 

  57. J. Geertsen, M. Rittby, and R.J. Bartlett, Chem. Phys. Lett. 164, 57 (1989).

    CAS  Google Scholar 

  58. J.F. Stanton and R.J. Bartlett, J. Chem. Phys. 98, 7029 (1993).

    CAS  Google Scholar 

  59. K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 8490 (2000).

    CAS  Google Scholar 

  60. K. Kowaiski and P. Piecuch, J. Chem. Phys. 115, 643 (2001).

    Google Scholar 

  61. K. Kowalski and P. Piecuch, Chem. Phys. Lett. 347, 237 (2001).

    CAS  Google Scholar 

  62. P. Piecuch and R.J. Bartlett, Adv. Quantum Chem. 34, 295 (1999).

    CAS  Google Scholar 

  63. A.I. Krylov and C.D. Sherrill, J. Chem. Phys. 116, 3194 (2002).

    CAS  Google Scholar 

  64. L.V. Slipchenko and A.I. Krylov, J. Chem. Phys. 117, 4694 (2002).

    CAS  Google Scholar 

  65. R.J. Bartlett and G.D. Purvis III, Phys. Scr. 21, 255 (1980).

    CAS  Google Scholar 

  66. X. Li and J. Paldus, mt. J. Quantum Chem. 77, 281 (2000).

    CAS  Google Scholar 

  67. S.R. Gwaltney and M. Head-Gordon, Chem. Phys. Lett. 323, 21 (2000).

    CAS  Google Scholar 

  68. SR. Gwaltney, C.D. Sherrill, M. Head-Gordon, and A.I. Krylov, J. Chem. Phys. 113, 3548 (2000).

    CAS  Google Scholar 

  69. SR. Gwaltney and M. Head-Gordon, J. Chem. Phys. 115, 2014 (2001).

    CAS  Google Scholar 

  70. S.R. Gwaltney, E.F.C. Byrd, T. Van Voorhis, and M. Head-Gordon, Chern. Phys. Lett. 353, 359 (2002).

    CAS  Google Scholar 

  71. M. Head-Gordon, T. Van Voorhis, S.R. Gwaltney, and E.F.C. Byrd, in: Low-Lying Potential Energy Surfaces, ACS Symposium Series, Vol. 828, edited by M.R. Hoff- mann and K.G. Dyall (American Chemican Society, Washington, D.C., 2002), pp. 93–108.

    Google Scholar 

  72. J.F. Stanton, Chem. Phys. Lett. 281, 130 (1997).

    CAS  Google Scholar 

  73. C.D. Sherrill, A.I. Krylov, E.F.C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 4171 (1998).

    CAS  Google Scholar 

  74. A.I. Krylov, C.D. Sherrill, E.F.C. Byrd, and M. Head-Gordon, J. Chem. Phys. 109, 10669 (1998).

    CAS  Google Scholar 

  75. K. Kowaiski and P. Piecuch, J. Chem. Phys. 115, 2966 (2001).

    Google Scholar 

  76. K. Kowalski and P. Piecuch, J. Chem. Phys. 116, 7411 (2002).

    CAS  Google Scholar 

  77. P. Piecuch, S.A. Kucharski, K. Kowalski, and M. Musial, Comp. Phys. Commun. 149, 71 (2002).

    Google Scholar 

  78. P. Piecuch, I.S.O. Pimienta, P.-D. Fan, and K. Kowalski, in: Recent Progress in Electron Correlation Methodology, ACS Symposium Series, Vol. XXX, edited by A.K. Wilson (American Chemican Society, Washington, D.C., 2003). pp. XX-XXX (submitted).

    Google Scholar 

  79. J.S. Arponen, Ann. Phys. 151, 311 (1983).

    CAS  Google Scholar 

  80. J.S. Arponen, R.F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2519 (1987).

    Google Scholar 

  81. J.S. Arponen, R.F. Bishop, and E. Pajanne, Condensed Matter Theor. 2, 357 (1987).

    CAS  Google Scholar 

  82. R.F. Bishop, J.S. Arponen, and E. Pajanne, in: Aspects of Many-Body Effects in Molecules and Extended Systems, Lecture Notes in Chemistry, Vol. 50, edited by D. Mukherjee ( Springer, Berlin, 1989 ), p. 79.

    Google Scholar 

  83. R.F. Bishop and J.S. Arponen, mt. J. Quantum Chem. Symp. 24, 197 (1990).

    CAS  Google Scholar 

  84. J.S. Arponen and R.F. Bishop, Ann. Phys. 207, 171 (1991).

    Google Scholar 

  85. R.F. Bishop, N.J. Robinson, and J.S. Arponen, Condensed Matter Theor. 5, 37 (1990).

    Google Scholar 

  86. R.F. Bishop, Theor. Chim. Acta 80, 95 (1991).

    CAS  Google Scholar 

  87. J.S. Arponen, Phys. Rev. A 55, 2686 (1997).

    CAS  Google Scholar 

  88. J.S. Arponen, R.F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2539 (1987).

    Google Scholar 

  89. T. Van Voorhis and M. Head-Gordon, Chem. Phys. Lett. 330, 585 (2000).

    Google Scholar 

  90. E.F.C. Byrd, T. Van Voorhis, and M. Head-Gordon, J. Phys. Chem. B 106, 8070 (2002).

    CAS  Google Scholar 

  91. J. Hubbard, Proc. Roy. Soc. A 240, 539 (1957); ibid. 243, 336 (1958); ibid. 244, 199 (1958).

    Google Scholar 

  92. M. Nooijen, Phys. Rev. Lett. 84, 2108 (2000).

    CAS  Google Scholar 

  93. H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000).

    CAS  Google Scholar 

  94. H. Nakatsuji and ER. Davidson, J. Chem. Phys. 115, 2000 (2001).

    CAS  Google Scholar 

  95. H. Nakatsuji, J. Chem. Phys. 115, 2465 (2001).

    CAS  Google Scholar 

  96. H. Nakatsuji, J. Chem. Phys. 116, 1811 (2002).

    CAS  Google Scholar 

  97. T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 115, 5033 (2001).

    Google Scholar 

  98. P. Piecuch, K. Kowalski, P.-D. Fan, and K. Jedziniak, Phys. Rev. Lett. (resubmitted after revision).

    Google Scholar 

  99. L.V. Kantorovich and V.1. Krylov, Approximate Methods of Higher Analysis ( Interscience, New York, 1958 ), p. 150.

    Google Scholar 

  100. K. Jankowski, J. Paldus, and P. Piecuch, Theor. Chim. Acta 80, 223 (1991).

    CAS  Google Scholar 

  101. R.J. Bartlett, J.D. Watts, S.A. Kucharski, and J. Noga, Chem. Phys. Lett. 165, 513 (1990).

    CAS  Google Scholar 

  102. S.A. Kucharski and R.J. Bartlett, Adv. Quantum Chem. 18, 281 (1986).

    CAS  Google Scholar 

  103. K. Raghavachari, J.A. Pople, ES. Replogle, and M. Head-Gordon, J. Phys. Chem. 94, 5579 (1990).

    CAS  Google Scholar 

  104. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).

    CAS  Google Scholar 

  105. K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (Van Nostrand, New York, 1979 ).

    Google Scholar 

  106. E.A. Colbourn, M. Dagenais, A.E. Douglas, and J.W. Raymonda, Can. J. Phys. 54, 1343 (1976).

    CAS  Google Scholar 

  107. R.A. Kendall, T.H. Dunning Jr., and R.J. Harrison, J. Chem. Phys. 96, 6796 (1992).

    CAS  Google Scholar 

  108. T.H. Dunning, J. Chem. Phys. 53, 2823 (1970).

    CAS  Google Scholar 

  109. P. Saxe, H.F. Schaefer III, and N.C. Handy, Chem. Phys. Lett. 79, 202 (1981).

    CAS  Google Scholar 

  110. R.J. Harrison and N.C. Handy, Chem. Phys. Lett. 95, 386 (1983).

    CAS  Google Scholar 

  111. M. Musial, S.A. Kucharski, and R.J. Bartlett, Chem. Phys. Lett. 320, 542 (2000).

    CAS  Google Scholar 

  112. H. Schor, S. Chapman, S. Green, and R.N. Zare, J. Chem. Phys. 69, 3790 (1978).

    CAS  Google Scholar 

  113. Chapman, M. Dupuis, and S. Green, Chem. Phys. 78, 93 (1983).

    CAS  Google Scholar 

  114. A. Aguado, V. Sanz, and M. Paniagua, mt. J. Quantum Chem. 61, 491 (1997).

    CAS  Google Scholar 

  115. P.3. Kuntz and A.C. Roach, J. Chem. Phys. 74, 3420 (1981).

    CAS  Google Scholar 

  116. A.C. Roach and P.J. Kuntz, J. Chem. Phys. 74, 3435 (1981).

    CAS  Google Scholar 

  117. P.3. Kuntz and J.L. Schreiber, J. C/rem. Phys. 76, 4120 (1982).

    CAS  Google Scholar 

  118. E. Garcia and A. Lagana, Mol. Phys. 56, 629 (1985).

    CAS  Google Scholar 

  119. X. Liu and J.N. Murrell, J. Chem. Soc., Faraday Trans. 87, 435 (1991).

    Google Scholar 

  120. A. Aguado, C. Sieiro, and M. Paniagua, J. Mol. Struct.: THEOCHEM 260, 179 (1992).

    Google Scholar 

  121. S. Huzinaga, 3. Andzelm, M. Klobukowski, E. Radzio-Andzelrn, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations, ( Elsevier, Amsterdam, 1984 ).

    Google Scholar 

  122. M.J. McGuire, P. Piecuch, K. Kowalski, S.A. Kucharski, and M. Musial, unpublished.

    Google Scholar 

  123. H-J. Werner and P.J. Knowles, J. Chem. Phys. 89, 5803 (1988).

    CAS  Google Scholar 

  124. P.3. Knowles and H-J. Werner, Chem. Phys. Lett. 145, 514 (1988).

    CAS  Google Scholar 

  125. MOLPRO, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, version 2002. 1, RD. Amos, A. Bernhardsson, A. Berning, P. Celani, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P.J. Knowles, T. Korona, R. Lindh, A.W. Lloyd, S.J. McNicholas, F.R. Manby, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, and H.-J. Werner.

    Google Scholar 

  126. T. Van Voorhis and M. Head-Gordon, J. Chem. Phys. 113, 8873 (2000).

    Google Scholar 

  127. R.J. Bartlett and 3. Noga, Chem. Phys. Lett. 150, 29 (1988).

    CAS  Google Scholar 

  128. R.J. Bartlett, S.A. Kucharski, J. Noga, J.D. Watts, and G.W. Trucks, in: Many- Body Methods in Quantum Chemistry, Lecture Notes in Chemistry, Vol. 52, edited by U. Kaldor ( Springer, Berlin, 1989 ), p. 124.

    Google Scholar 

  129. E.A. Salter, G.W. Trucks, and R.J. Bartlett, J. Chem. Phys. 90, 1752 (1989).

    Google Scholar 

  130. E.A. Salter and R.J. Bartlett, J. Chem. Phys. 90, 1767 (1989).

    Google Scholar 

  131. S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. 108, 5243 (1998).

    CAS  Google Scholar 

  132. S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. 108, 5255 (1998).

    CAS  Google Scholar 

  133. J.F. Stanton arid R.J. Bartlett, J. Chem. Phys. 99, 5178 (1993).

    Google Scholar 

  134. S. Pal, Theor. C/rim. Acta 66, 151 (1984).

    CAS  Google Scholar 

  135. S. Pal, Phys. Rev. A 33, 2240 (1986).

    CAS  Google Scholar 

  136. Pal, Phys. Rev. A 34, 2682 (1986).

    Google Scholar 

  137. K.B. Ghose and S. Pal, Phys. Rev. A 36, 1539 (1987).

    Google Scholar 

  138. N. Vaval, K.B. Ghose, and S. Pal, J. Chem. Phys. 101, 4914 (1994).

    CAS  Google Scholar 

  139. N. Vaval and S. Pal, Phys. Rev. A 54, 250 (1996).

    CAS  Google Scholar 

  140. A.B. Kumar, N. Vaval, and S. Pal, C/rem. Phys. Lett. 295, 189 (1998).

    Google Scholar 

  141. N. Vaval, A.B. Kumar, and S. Pal, ml. J. Mol. Sci. 2, 89 (2001).

    CAS  Google Scholar 

  142. N. Vaval, C/rem. Phys. Lett. 318, 168 (2000).

    CAS  Google Scholar 

  143. Paldus, P. Piecuch, L. Pylypow, and B. Jeziorski, Phys. Rev. A 47, 2738 (1993).

    Google Scholar 

  144. P. Piecuch and 3. Paldus, Phys. Rev. A 49, 3479 (1994).

    CAS  Google Scholar 

  145. P. Piecuch, R. Tohola, and 3. Paldiis, Chem.. Phys. Lett. 210, 243 (1993).

    CAS  Google Scholar 

  146. W.J. Hehre, R.F. Stewart, and J.A. Pople, J. C/rem. Phys. 51, 2657 (1969).

    CAS  Google Scholar 

  147. Numerical Recipes in Fortran: The Art of Scientific Computing ( Cambridge University Press, Cambridge, U.K., 1992 ).

    Google Scholar 

  148. H. Weyl, The Classical Groups, Their Invariants and Representations (Princeton University Press, Princeton, N.J., 1946 ).

    Google Scholar 

  149. CD. Sherrill and H.F. Schaefer III, Adv. Qaantum Chem, 34, 143 (1999).

    CAS  Google Scholar 

  150. M. Noooijen and V. Lotrich, J. Chem. Phys. 113, 4549 (2000).

    Google Scholar 

  151. H. Nakatsuji, Phys. Rev. A 14, 41 (1976).

    Google Scholar 

  152. D. Horn and M. Weinstein, Phys. Rev. D 30, 1256 (1984).

    CAS  Google Scholar 

  153. D. Horn, M. Karliner, and M. Weinstein, Phys. Rev. D 31, 2589 (1985).

    CAS  Google Scholar 

  154. C.P. van den Doel and D. Horn, Phys. Rev. D 33, 3011 (1986).

    Google Scholar 

  155. M. Weinstein, Phys. Rev. D 47, 5499 (1993).

    CAS  Google Scholar 

  156. D. Horn, W.G.J. Langeveld, H.R. Quinn, and M. Weinstein, Phys. Rev. D 38, 3238 (1988).

    CAS  Google Scholar 

  157. C.P. van den Doel and D. Horn, Phys. Rev. D 35, 2824 (1987).

    Google Scholar 

  158. C.P. van den Doel, D. Horn, and A. Klatchko, Phys. Lett. B 172, 399 (1986).

    Google Scholar 

  159. R. Perez, M.C. Cambiaggio, and J.P. Vary, Phys. Rev. C 37, 2194 (1988).

    CAS  Google Scholar 

  160. J. Cioslowski, Phys. Rev. Lett. 58, 83 (1987).

    CAS  Google Scholar 

  161. P. Marko and S. Olejnfk, Phys. Rev. D 42, 2943 (1990).

    Google Scholar 

  162. K. Jankowski, L. Meissner, and J. Wasilewski, mt. J. Quantum Chem. 28, 931 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Piecuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Piecuch, P., Kowalski, K., Fan, PD., Pimienta, I.S.O. (2003). New Alternatives for Electronic Structure Calculations: Renormalized, Extended, and Generalized Coupled-Cluster Theories. In: Maruani, J., Lefebvre, R., Brändas, E.J. (eds) Advanced Topics in Theoretical Chemical Physics. Progress in Theoretical Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0635-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0635-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6401-1

  • Online ISBN: 978-94-017-0635-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics