Skip to main content

Plasma Production above Multipolar Magnetic Field Structures: From D.C. Magnetrons to Distributed ECR

  • Chapter
Advanced Technologies Based on Wave and Beam Generated Plasmas

Part of the book series: NATO ASI Series ((ASHT,volume 67))

  • 620 Accesses

Abstract

Multipolar magnetic fields, currently used for the confinement and the production of low pressure plasmas, are particularly suitable for the scaling-up of plasma sources. In such magnetic field configuration, the fast electrons, responsible for plasma excitation, oscillate within two field lines between two adjacent, opposite magnetic poles. They also undergo a drift motion perpandicular to the magnetic field, hence the interest of closing the magnetic structures onto themselves according to magnetron-like configurations. The fast electrons can be produced: i) by electron emission from negatively biased filaments; ii) by applying r.f. or negative d.c. voltages on the magnetron structure; iii) at ECR by applying microwaves in the magnetic field region. Then, the ions and the slow electrons produced along the itinerary of the fast electrons diffuse perpandicularly to the magnetic field lines under the influence of the density gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leung, K.N., Samec, T.K. and Lamm, A. (1975) Optimization of permanent magnet plasma confinement, Phys. Lett. 51 A, 490–492.

    Google Scholar 

  2. Koch, C. and Matthieussent, G. (1983) Collisions] diffusion of a plasma in multipolar and picket fence devices, Phys. Fluids 26, 545–555.

    Article  ADS  MATH  Google Scholar 

  3. Matthieussent, G. and Pelletier, J. (1992) Ambipolar diffusion model of multipolar plasmas, in Moisan M., and Pelletier J. (eds.), Microwave Excited Plasmas, Elsevier, Amsterdam, 303–350.

    Google Scholar 

  4. Gauthereau, C. and Matthieussent, G., (1984) Etudes des trajectoires des électrons primaires dans une décharge multipolaire, J Physique 45, 1113–1123.

    Article  Google Scholar 

  5. Pelletier, J. and Matthieussent, G. (1992) Homogeneity in multipolar discharges: the röle of primary electrons, in Moisan M., and Pelletier J. (eds.), Microwave Excited Plasmas, Elsevier, Amsterdam, 351384.

    Google Scholar 

  6. Limpaecker, R. and MacKenzie, K.R. (1973) Magnetic Multipole containment of large uniform collisionless quiescent plasmas, Rev. Sc,. Instrum. 44, 726–731.

    Article  Google Scholar 

  7. 7 Courteille, C., Bruneteau, J., Valckx, F., Zleziwski, Z., and Bacal, M. (1993) Primary electron drift in a volume hybrid multicusp H. ion source, Rev. Sei. Instrum. 64 3265–3269.

    Google Scholar 

  8. Pichot, M., Durandet, A., Pelletier, J., Amal, Y. and Vallier, L. (1988) Microwave multipolar plasmas excited by distributed electron cyclotron resonance concept and performance, Rev. Sci. Instrum. 59, 1072–1075.

    Article  ADS  Google Scholar 

  9. Lagarde, T. (1994) Doctorat Thesis, Université Paris X I, Orsay, France, November

    Google Scholar 

  10. Lagarde, T., Pelletier, J., and Amal, Y. (1997) Influence of the multipolar magnetic field configuration on the density of distributed electron cyclotron resonance plasmas, Plasma Sources Sci. Technol. 6, 53–60.

    Article  ADS  Google Scholar 

  11. Lagarde, T., Amal, Y. and Pelletier, J. (1997) Influence of the applied field frequency on the characteristics of Ar and SF6 diffusion plasmas sustained at electron cyclotron resonance above multipolar magnetic field structures, Plasma Sources Sci. Technol. 6, 386–393.

    Google Scholar 

  12. Allis, W.P., Buchsbaum S.J., and Bers, A. (1963) Waves in Anisotropic Plasmas, MA: MIT, Cambridge.

    Google Scholar 

  13. Margot, J. Johnston, T.W., and Musil, J. (1992) Principles of magnetically assisted microwave discharges, in Moisan M., and Pelletier J. (eds) Microwave Excited Plasmas, Elsevier, Amsterdam, pp. 181–212.

    Google Scholar 

  14. Zakrzewski, Z., and Moisan, M. (1995) Plasma sources using long linear microwave field applicators: main features, classification and modelling, Plasma Sources Sci. Technol. 4, 379–397.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pelletier, J., Lagarde, T., Arnal, Y. (1999). Plasma Production above Multipolar Magnetic Field Structures: From D.C. Magnetrons to Distributed ECR. In: Schlüter, H., Shivarova, A. (eds) Advanced Technologies Based on Wave and Beam Generated Plasmas. NATO ASI Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0633-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0633-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5191-2

  • Online ISBN: 978-94-017-0633-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics