Skip to main content

Part of the book series: NATO ASI Series ((ASHT,volume 67))

Abstract

Gas discharges are used for a variety of lighting applications which cover a wide range of plasma parameters. Examples can be found in each of the major classifications of industrial plasmas; low pressure, non-LTE discharges (eg. fluorescent lamps); thermal or LTE plasmas (eg. HID lamps); and “non-thermal” plasmas (barrier discharge lamps). In the last decade, considerable progress has been made in the development of new fluorescent and HID lamps in which the discharges are maintained by high frequency (250 kHz to 2.45 GHz) electromagnetic fields produced outside the discharge — so-called “electrodeless” lamps [1–3]. These developments, and the underlying physics on which they are based, form the basis of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wharmby, D.O. (1993) Electrodeless Lamps for Lighting: a review, IEE Proceedings-A 140, 485–473; Electrodeless lamps (1997), in J.R. Coaton and A. M. Marsden (eds.) Lamps and Lighting, Arnold, London pp 216–226

    Google Scholar 

  2. The Lighting Research Center (1985) Electrodeless Lamps: The Next Generation, Lighting Futures, Vol. 1, No. 1 (Rensselaer Polytechnic Institute, Troy, NY, USA). See also [9], p216

    Google Scholar 

  3. Smets, B. (1996) Induction Lighting, International Lighting Review 96/4 (Philips Lighting)

    Google Scholar 

  4. Abeywickrama, M.G. (1997) Fluorescent Lamps, in J.R. Coaton and A. M. Marsden (eds.) Lamps and Lighting, Arnold, London pp 194–215

    Google Scholar 

  5. Tesla’s experiments with alternating current at high frequency (1981), Electrical Engineer 7 549–550 6.. Tumer,B.P., Ury, M.G., Leng, Y. and Love, W.G. (1995) Sulfur lamps — progress in their development, IES Annual Conference, Paper 87

    Google Scholar 

  6. Lapatovich, W.P. (1995) Novel microwave powered High Intensity Discharge lamps in R. Itani and Kamiya S. (eds) Proc. 7“ Int. Symposium on the Science and Technology of Light Source (Tokyo, Japan). Tokyo: Illuminating Engineering Institute of Japan pp. 139–148

    Google Scholar 

  7. Stewart, C.S., Arake, A., Dakin, J.T., Duffy, M.E., El-Hamamsy, S-A., Inouye, A. Roberts, V.D., Shimizu, K. and Witting, H. (1992) Inductively coupled HID lighting system, in L. Bartha and F,J, Kedves (eds) Proc. 6“ Int. Symp. on the Science and Technology of Light Sources, Technical University of Budapest, pp 319–320

    Google Scholar 

  8. Waymouth, J.F. (1971) Electric Discharge Lamps (The MIT Press)

    Google Scholar 

  9. Coaton, J.R. and Marsden, A.M. eds. (1997) Lamps and Lighting (Arnold)

    Google Scholar 

  10. Netten, A. and Verheij, C.M. (1991); Updated 1994: QL lighting product presentation storybook. Philips Lighting, Eindhoven, Product Literature

    Google Scholar 

  11. Bethenod, J.. et al (1936) Electromagnetic Apparatus, US Patent #2, 030, 957

    Google Scholar 

  12. Shinomaya, M., Kobayashi, K., Higashikawa, M., Ukegawa, S., Matsuura, J. and Tanigawa, K. (1991), Development of the electrodeless fluorescent lamp, Journal of the Illuminating Engineering Soc. 44–49

    Google Scholar 

  13. Anderson, J.M. (1970) Electrodeless gaseous electric discharge device using ferrite cores, US Patent # 3,500, 118

    Google Scholar 

  14. Godyak, V. and Schaffer, J. (1998) in Proc. R“ Int. Symposium on the Science and Technology of Light Source (Greifsald, Germany), in press.

    Google Scholar 

  15. DiChristina M. (1995) Lighting: Bright Light, Small Bulb, Popular Science, Feb. 95

    Google Scholar 

  16. Waymouth, J.F. (1993) Applications of microwave discharges to high power light sources, in C.M. Ferreira and M. Moisan (eds) Microwave discharges, fundamentals and applications, NATO ASI Series, Plenum Press

    Google Scholar 

  17. Weibel, E.S. (1967) Anomolous skin in a plasma, Phys. Fluids 10 741–748

    Article  ADS  Google Scholar 

  18. INIRC (1988) Guidelines on limits of exposure to radio-frequency electromagnetic fields in the frequency range 100 kHz to 300 GHz, Healt Science 54 115–123

    Google Scholar 

  19. Waymouth, J.F. and Bitter F. (1956) Analysis of plasma of fluorescent lamps, J. Appl. Phys. 27 122–31

    Article  ADS  Google Scholar 

  20. Cayless, M.A. (1962) Theory of low pressure mercury rare-gas diacharges, in Proc. Vth Int. Conf On Ionization Phenomena in Gases (ICPIG), Munich, pp 263–277

    Google Scholar 

  21. Dakin, J.T. (1986) A model of radial variations in the low-pressure mercury-argon positive column J. Appl. Phys. 60 563–570

    Article  ADS  Google Scholar 

  22. Maya, J. and Lagushenko, R. (1990) Progress in low pressure mercury-rare-gas discharge research, Advances in Atomic, Molecular and Optical Phys. 26 321–373

    ADS  Google Scholar 

  23. Zissis, G.. Bénétruy, P. and Bemat, I. (1992) Modeling the Hg-Ar low pressure discharge positive column: A comparative study, Phys. Rev. A 45 1135–1148

    Article  ADS  Google Scholar 

  24. Lister, G.G. and Coe, S.E. (1993) GLOMAC: a one dimensional model for steady state low pressure mercury-noble gas discharges, Computer Physics Communications 75 160–184

    Article  ADS  Google Scholar 

  25. Vermeersch, F. and Wieme, W. (1991) Calculation of resonance radiation trapping in Optogalvanic Spectroscopy, Inst. Of Physics Conf. Ser. 113 109

    Google Scholar 

  26. Spitzer, L. (1961) Physics of Fully Ionized Gases ( second edition, Interscience, New York )

    Google Scholar 

  27. Spitzer, L. and Härm, R. (1953) Transport phenomena in a completely ionized gas Phys. Rev. 89 977–81

    Article  ADS  MATH  Google Scholar 

  28. Zollweg, R.J. and Liebermann, R.W. (1987) Electrical conductivity of non-ideal plasmas, J. Appl. Phys. 62 3621–3627

    Article  ADS  Google Scholar 

  29. Godyak, V.A. (1997) private communication

    Google Scholar 

  30. Morgan. W.L. and Vriens L. (1980) J. Appl. Phys., 51, 5300

    Article  ADS  Google Scholar 

  31. 32. Kortshagen U., Busch C. and Tsendin L. D. (1996) On simplifying approaches to the solution of the Boltzmann equation in sopa Plasma Sources Sci. Technol.,5,1

    Google Scholar 

  32. Feokistov, V.A., Popov, A.M., Popovicheva, A.T., Rhakimov, T., Rhakimova, V. and Volkova, E.A. (1991) IEEE Trans. Plasma Sci., 20, 66

    Google Scholar 

  33. Verweij, W. (1961) Probe measurements and determination of electron mobility in the positive column of low-pressure mercury-argon discharges, Philips Res. Rep. Sup. 2, 1–112

    Google Scholar 

  34. Koedam, M. and Kruithof, A.A. (1962) Transmission of the visible mercury triplet by the low pressure mercury-argon discharge: concentration of 6’P states, Physica 28, 80–100

    Article  ADS  Google Scholar 

  35. Koedam, M., Kruithof, A.A. and Riemens, J. (1963) Energy balance of the low pressure mercury-argon positive column, Physica 29, 565–584

    Article  Google Scholar 

  36. Rockwood, S.D. (1973) Elastic and inelastic cross sections for electron-Hg scattering fromtransport data„ Phys.Rev.A, 8, 2348–2258

    Article  ADS  Google Scholar 

  37. Vriens, L., Keijser, R.A.J. and Ligthart, A.S. (1978) Ionization processes in the positive column of the low pressure Hg-Ar discharge, J. App. Phys. 49 3807–381358

    Google Scholar 

  38. Sawada S., Sakai, Y. and Tagashira, H. (1989) Boltzmann equation analyses of electon swarm parameters in Hg-Ar gas mixtures: effect of metastable Hg and Ar atoms,) J. Phys. D: App. Phys. 22 282–88

    Article  ADS  Google Scholar 

  39. Sommerer, T.J. (1996) An explanation of the positive differential characteristic in weakly ionized, low pressure positive column gas discharge plasmas, Phys. Rev. Lett. 77 502

    Article  ADS  Google Scholar 

  40. Zissis, G. (1996) private communication

    Google Scholar 

  41. Yousfi, M., Zissis, G., Alkaa, K. and Damelincourt, J.I. (1990) Boltzmann-equation analysis of electron kinetics in a positive column of low-pressure Hg-rare gas diacharges, Phys. Rev. A. 42 978

    Article  ADS  Google Scholar 

  42. Fang, D.Y. and Huang, C.H. (1988) Modeling of low pressure Ar+Hg discharge with high electric current densities, J. Phys. D:Appl. Phys. 21 1490–1495

    Article  ADS  Google Scholar 

  43. Lister, G.G. (1998) in preparation

    Google Scholar 

  44. Denneman, J. (1990) Determination of electromagnetic properties of low-pressure electrodeless discharges, J. Phys. D:Appl. Phys. 23 293–298

    Article  ADS  Google Scholar 

  45. Lister, G.G. and Cox, M. (1992) Modeling of inductively coupled discharges with internal and external coils, Plasma Sources Sci. Technol. 1 67–73

    Article  ADS  Google Scholar 

  46. Wharmby, D.O. (1994) Electrodeless discharges for lighting, in 47 th Gaseous Electronics Conference, Gaithersburg, MD (unpublished)

    Google Scholar 

  47. Kushner, M.J. (1997) Consequences of asymmetric pumping in low pressure processing reactors: A rthree dimensional modeling study, J. Appl. Phys. 80 5312–5320

    Article  ADS  Google Scholar 

  48. Jonkers, J. Bakker, M. and van der Mullen J.A.M. (1997) Absorption measurements on a low-pressure, inductively coupled argon-mercury discharge for lighting purposes: 1. The gas temperature and metastable states density, J. Phys. D: Appt. Phys. 30 1928–33

    Google Scholar 

  49. Godyak, V. and Schaffer, J. (1998) ENDURA: A new high output electrodeless fluorescent light source, in Proc. 8’ Int. Symp. on the science and technology of light sources (Greifswald) in press

    Google Scholar 

  50. Moisan, M., Hubert J., Margot J. and Zakrewski, Z. (1998) The design and use of surface-wave sustained discharges for applications, this volume

    Google Scholar 

  51. Levy, D.J. and Berman, S.M. (1988) Instantaneous and efficient surface wave excitation of low pressure gas or gases, US Patent 4 792 725, 20“ December 1988

    Google Scholar 

  52. Beneking, C. and Anderer, P. (1992) Radiation efficiency of Hg-At surface wave discharges, J. Phys. D: Appl. Phys. 25 1470–82

    Article  ADS  Google Scholar 

  53. Rowley, A.T. and Wharmby, D.O. (1962) Power dissipation and light generation in surface wave discharges, in L. Bartha and F,J, Kedves (eds) Proc. 6’ Int. Symp. on the science and technology of light sources, Technical University of Budapest

    Google Scholar 

  54. Lister, G.G. (1993) Strongly damped surface waves in plasmas, in C.M. Ferreira and M. Moisan (eds.) Microwave discharges, fundamentals and applications, NATO ASI Series, Plenum Press 85–94

    Google Scholar 

  55. Gibson, N.D., Kortshagen, U. and Lawler, J.E. (1997) Investigations of the 147 nm radative efficiency of Xe surface wave discharges, J. Appl. Phys. 81 1087–1092

    Article  ADS  Google Scholar 

  56. Wolinska-Szatkowa, J. (1988) The model of a discharge sustained by standing surface wave, J. Phys. D: Appl. Phys. 21 937–42

    Article  ADS  Google Scholar 

  57. Lister, G.G. and Robinson, T. (1991) Strongly damped surface waves in plasmas I: the WKB approximation J. Phys. D: Appl. Phys. 24 1993–1999

    Article  ADS  Google Scholar 

  58. Schlüter, M. (1997) A numerical simulation of 2D surface waves, J. Phys. D: Appl. Phys. 30 Ll 1–15

    Google Scholar 

  59. Proud, J.M. and Smith, R.K. (1981) Compact fluorescent light sources having metallized electrodes, US Patent # 4,266, 166

    Google Scholar 

  60. Beneking, C. (1990) Impedance and emission properties of capacitively coupled Hg-Ar discharges, J. Appl. Phys. 68 5435–5446

    Article  ADS  Google Scholar 

  61. Beneking, C. (1990) Power dissipation in capacitively coupled rf discharges, J. Appl. Phys. 68 44614473

    Google Scholar 

  62. Elenbaas, W. (1951) The high pressure mercury vapour discharge (North Holland-Interscience)

    Google Scholar 

  63. Dakin, J.T., Rautenberg, T.H. Jr. and Goldfield, E.M. (1989) Anatomy of a vertical metal halide discharge, J. Appl. Phys. 66 4074–4088

    Google Scholar 

  64. Cayless, M.A. (1986) Radiation processes in high pressure discharge lamps, in J.M. Proud and E.H. Luessen (eds.) Radiative Processes in Discharge Plasmas NATO ASI Series (Plenum) pp 249–275

    Google Scholar 

  65. Stromberg, H-P. (1980) Line broadening and radiative transport in high pressure mercury discharges with Nal and T11 additives, J. Appl. Phys. 51 1963–1969

    Article  ADS  Google Scholar 

  66. Chang, P.Y., Shyy, W. and Dakin, K.T. (1990) A study of three-dimensional convection in high pressure mercury lamps -I, Mt. J. Heat Mass Transfer 33 483–493; Shyy, W. and Chang Y.Y., -II. ibid 495–506

    Google Scholar 

  67. Zollweg, R.1., Lowke, J.J. and Liebermann, R.W. (1975) Arc constriction in a lamp containing mercury and iodine, J. Appl. Phys. 46 3828

    Google Scholar 

  68. Jones, B.F. and Mottram, D.A.J. (1981) A semi-empirical formula to describe the net emission coefficient of self-absorbed spectral lines for use in modeling high-pressure discharge lamps, J. Phys.D: Appl. Phys. 14 1183–94

    Article  ADS  Google Scholar 

  69. Aubrecht, V. and Lowke, J.J. (1994) Calcualtions of radiation transfer in SF, plasmas using the method of partial caharacteristics, J. Phys.D: Appl. Phys. 27 2066–2073

    Article  ADS  Google Scholar 

  70. Offermans, S. (1990) Electrodeless high-pressure microwave discharges, J. Appl. Phys. 67 115–123

    Article  ADS  Google Scholar 

  71. Wharmby, D.O. (1986) Molecular radiation from LTE arcs, in J.M. Proud and E.H. Luessen (eds.) Radiative Processes n Discharge Plasmas, NATO ASI Series (Plenum) pp 249–275

    Google Scholar 

  72. Duffy, M.E., Dakin, J.T., Duffy, G.E. and Secen, M.M. (1992) Diagnostics and model of an inductive HID Hg discharge, in L. Bartha and F,J, Kedves (eds) Proc. 6’ Int. Symp. on the science and technology of light sources, Technical University of Budapest, pp 325–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lister, G.G. (1999). Electrodeless Gas Discharges for Lighting. In: Schlüter, H., Shivarova, A. (eds) Advanced Technologies Based on Wave and Beam Generated Plasmas. NATO ASI Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0633-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0633-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5191-2

  • Online ISBN: 978-94-017-0633-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics