Skip to main content

Waveguide Stationary and Nonstationary Discharges: Modelling and Experiments

  • Chapter

Part of the book series: NATO ASI Series ((ASHT,volume 67))

Abstract

Discharges produced in electromagnetic (EM) wave fields are the last ones entered the rich collection of the gas discharges. With their status of the most recent type of discharges and with the extended research on them, the wave sustained discharges support the development of modern trends in the field of the gas discharge physics. Based on the mechanism of the ionization nonlinearity, the gas discharges are nonlinear dissipative systems composed by two interrelated components: electric fields and plasmas. Creation of discharges and their evolution are processes of dynamics [1] of nonequilibrium dissipative systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaponov-Grekhov, A. V. and Rabinovich, M. I. (1987) Autostructures. Chaotic dynamics of ensembles, in A. V. Gaponov—Grekhov and M. 1. Rabinovich (eds.), Nonlinear Waves: Structures and Bifurcation, Nauka, Moscow, pp. 7–44.

    Google Scholar 

  2. Vikharev, A. L., GiI’denburg, V. B.. Golubyev, S. V., Yeremin, B. G., Ivanov, O. A., Litvak, A. G., Stepanov, A. N. and Yunakovsky, A. D. (1988) Nonlinear dynamics of a freely localized UHF discharge in electromagnetic wave beam, ZhETF 94, 136–145.

    Google Scholar 

  3. Litvak, A. G., ed. (1988) A High-Frequency Discharge in Wave Beams, Institute of Applied Physics, AN USSR, Gor’kii.

    Google Scholar 

  4. Vikharev, A. L., Gorbachev, A. M., Ivanov, O. A. and Kolysko, A. L. (1994) Plasma parameters and stimulated UV emission of filamentary structures in a high-pressure microwave discharge,.ITEP 79, 94–101.

    Google Scholar 

  5. Moisan, M., Beaudry, C. and Leprince, P. (1974) A new HF device for the production of long plasma columns at a high electron density, Phys. Lett. 50A, 125–126.

    Article  Google Scholar 

  6. Moisan, M. Ferreira, C. M., Hajlaoui, Y., Henry, D.. Hubert, J., Pantel, R., Ricard, A. and Zakrzewski, Z. (1982) Properties and applications of surface wave produced plasmas, Rev. Phys. Appl. 17, 707–727.

    Google Scholar 

  7. Moisan, M. and Zakrzewski, I. (1986) Plasma sustained by surface waves at microwave and if frequencies: experimental investigation and applications, in J. M. Proud and L. H. Luessen (eds.), Radiative Processes in Discharge Plasmas, Plenum, New York, pp. 381–430.

    Chapter  Google Scholar 

  8. Ferreira, C. M. and Moisan, M., eds. (1993) Microwave Discharges: Fundamentals and Applications Plenum, New York.

    Google Scholar 

  9. Trivelpiece, A. W. and Gould, R. W. (1959) Space charge waves in cylindrical plasma columns, J. Appl. Phys. 30, 1784–1793.

    Article  ADS  Google Scholar 

  10. Moisan, M., Shivarova, A. and Trivelpiece, A. W. (1982) Experimental investigations of the propagation of surface waves along a plasma column (review paper), Plasma Phys. 24, 1331.-1402.

    Google Scholar 

  11. Shivarova, A. and Zhelyazkov, I. (1982) Surface waves in gas-discharge plasma, in A. D. Boardman (ed.), Electromagnetic Surface Modes. Wiley, Chichester, pp. 465–520.

    Google Scholar 

  12. Bloyet, E., Leprince, P., Llamas, M. and Marec, J. (1981) Ionization by a pulsed plasma surface wave, Phys. Lett. A 83, 391–392.

    Article  ADS  Google Scholar 

  13. Aliev, Yu. M., Boev, A. G. and Shivarova. A. P. (1982) On the non-linear theory of a long gas discharge produced by an ionizing slow electromagnetic wave, Phys. Lett. A 92A, 235–237.

    Article  ADS  Google Scholar 

  14. Aliev, Yu. M., Boev, A. G. and Shivarova, A. P. (1984) Slow ionizing high-frequency electromagnetic wave along a thin plasma column, J. Phys. D: Appt Phys. 17, 2233–2242.

    Article  ADS  Google Scholar 

  15. Shivarova, A. (1992) Nonlinear surface modes, in P. Halevi (ed.). Spatial Dispersion in Solids and Plasmas, Elsevier, Amsterdam, pp. 557–616.

    Google Scholar 

  16. Aliev, Yu. M., Ivanova, K. M., Moisan. M. and Shivarova, A. P. (1993) Analytical expressions for the axial structure of surface wave sustained plasmas under various regimes of charged particle loss, Plasma Sources Sci. Technol. 2, 145–152.

    Article  ADS  Google Scholar 

  17. Aliev, Yu. M., Ghanashev, I., Schlüter, H., Shivarova, A. and Zethoff, M. (1994) Analytical estimations on the axsial structure of plasma-waveguide discharges, Plasma Sources Sei. Technol. 3, 216–225.

    Article  ADS  Google Scholar 

  18. Aliev, Yu. M., Maximov, A. V., Schlüter, H. and Shivarova, A. (1994) Axial structure of surface-wavesustained discharges influenced by local plasma resonances. J. Plasma Phys. 52, 321–337.

    Article  ADS  Google Scholar 

  19. Aliev, Yu. M., Maximov, A. V., Schlüter, H. and Shivarova. A. (1995) On the axial structure of surface wave sustained discharges, Physica.capta 51, 257–262.

    ADS  Google Scholar 

  20. Aliev, Yu. M., Maximov, A. V., Ghanashev, I., Shivarova, A. and Schlüter, H. (1995) IEEE Trans. Plasma Sci. 23, 409–414.

    Article  ADS  Google Scholar 

  21. Aliev, Yu. M., Georgieva, M., Shivarova, A. and Schlüter, H. (1995) Nonlinear permittivity of surface wave produced plasmas, J. Phys. Appl. Phys. 28, 1997–2001.

    Article  ADS  Google Scholar 

  22. Aliev, Yu. M., Georgieva, M., Grosse. S., Schlüter, H. and Shivarova. A. (1996) Contr. Plasma Phys. 36, 573–582.

    Article  ADS  Google Scholar 

  23. Aliev, Yu. M., Schlüter, H. and Shivarova, A. (1996) A non-local hydrodynamic approach to plasma heating in surface wave sustained discharges, Plasma Sources.Sci. Technol. 5, 514–516.

    Article  ADS  Google Scholar 

  24. Aliev, Yu. M., Grosse, S., Schlüter, Il. and Shivarova, A. (1996) Nonlinearity: Basis of self-consistent modeling of surface wave produced plasmas in diffusion controlled regimes, Phys. Plasmas 3, 3162–3175.

    Article  ADS  Google Scholar 

  25. Aliev, Yu. M., Schlüter, H. and Shivarova, A., Guided Wave Produced Plasmas,Springer, Berlin, in preparation.

    Google Scholar 

  26. Ivanova, K., Koleva, I., Shivarova. A. and Tatarova, E. (1993) Radiophysics plasma diagnostic methods applied to surface wave sustained microwave discharges, Physica Scripta 47, 224–229.

    Google Scholar 

  27. Kortshagen, U., Shivarova, A., Tatarova. E. and Zamtirov. D. (1994) Electron energy distribution function in a microwave discharge created hi propagating surface waves (1994) J. Phys. D: Appl. Phys. 27, 30 1311.

    Google Scholar 

  28. Ivanova, K., Koleva, L and Shivarova, A. (1995) Optical spectroscopy diagnostics of a helium surface wave sustained discharge. I: experiment, Plasma Sources Set. Technol. 4, 444–449.

    Article  ADS  Google Scholar 

  29. Dountchev, L., Koleva, I. and Shivarova, A. (1996) Optical spectroscopy diagnostics of a helium surface wave sustained discharge. II: modelling and evaluation of experimental data, Plasma Sources Sci. Technol. 5, 531–543.

    Article  ADS  Google Scholar 

  30. Grozev, D., Kirov, K., Makasheva. K. and Shivarova, A. (1997) Modulation instability in pulsed surface-wave sustained discharges, IEEE Trans. Plasma Sci. 25, 415–422.

    Article  ADS  Google Scholar 

  31. Grozev, D., Kirov, K., and Shivarova. A. (1998) Pulsed waveguided discharges, in J. Marec (ed.) Microwave Discharges: Fundamental and Applications,3`d Int. Workshop (Fontevraund, 1997), in press.

    Google Scholar 

  32. Grozev, D., Kirov, K., Makasheva, K. and Shivarova, A. (1997) Surface wave sustained discharges in pulsed regime operation, M. C. Bordage and A. Gleizes (eds.) 23’ d ICPIG (Toulouse, 1997), Univ. Paul Sabatier, Toulouse, vol. 1, pp. 156–157.

    Google Scholar 

  33. Djermanova, N., Grozev, D., Kirov, K.. Shivarova. A. and Tsvetkov, Ts. (1997) Filamentation of surface wave sustained discharges, M. C. Bordage and A. Gleizes (eds.) 23’ d ICPIG (Toulouse. 1997), Univ. Paul Sabatier, Toulouse, vol. 2, pp. 192–193.

    Google Scholar 

  34. Djermanova, N., Grozev, D.. Kirov, K., Makasheva, K., Shivarova, A. and Tsvetkov, Ts. (1998) Self-organization of surface wave sustained discharges in the pressure range from 10 up to 200 Torr, J. Appl. Phys., submitted.

    Google Scholar 

  35. Glaude, V. M. M., Moisan, M.. Pantel, R., Leprince, P. and Marec, J. (1980) Axial electron density and wave power distribution along a plasma column sustained by the propagation of a surface microwave, J. Appl. Phys. 51, 5693–5698.

    Article  ADS  Google Scholar 

  36. Ferreira, C. M. (1983) Modelling of low-pressure plasma column sustained by a surface wave, J. Phys. D: Appl. Phys. 16, 1673–1685.

    Article  ADS  Google Scholar 

  37. Zakrzewski, Z. (1983) Conditions of existence and axial structure of long microwave discharges sustained by travelling waves,. 1. Phys. I): Appl. Phy.s. 16, 171 180.

    Google Scholar 

  38. Zakrzewski, Z., Moisan, M., Glaude, V. M. M., Beaudry, C. and Leprince, P. (1977) Attenuation of a surface wave in a unmagnetized R.F. plasma column, Plasma Phys. 19, 77–83.

    ADS  Google Scholar 

  39. Golubyatnikov, G., Kostrov, A., Shivarova, A., Tatarova, E. and Zamfirov, D. (1992) Dispersion behaviour of surface waves in surface wave produced plasmas, NATU ARW on Microwave Discharges: Fundamentals and Applications (Vimeiro, 1992), Abstracts: p. 57.

    Google Scholar 

  40. Berndt, J., Grozev, D., Schlüter, Il. and Shivarova, A. (1998) Test surface waves as a diagnostics tool for SWSDs, in H. Schlüter. and A. Shivarova (eds.). Advanced Technologies Based on Wave and Beam Generated Plasmas (NATO ASI, Sozopol 1998 ), Kluwer.

    Google Scholar 

  41. Granier, A., Boisse-Laporte. C., Leprince, P.. Marec, J. and Nghiem, P. (1987) Wave propagation and diagnostics in argon surface-wave discharges up to 100 Torr, J. Phys. D: Appl. Phys. 20. 204–209.

    Article  ADS  Google Scholar 

  42. Grosse, S. (1995) Investigations on microwave excited surface wave plasmas in argon, PhD Thesis, Ruhr-Uni, Bochum.

    Google Scholar 

  43. Darchicourt, R.. Pasquiers. S., Boisse-Laporte, C., Leprince. P. and Marec, J. (1988) Influence of the radial electron density profile on the determination of the characteristics of surface-wave-produced discharges, J. Phys. D: Appl. Phys. 21, 293–300.

    Google Scholar 

  44. Kortshagen, U., Schlüter, H. arid Shivarova, A- (1991) Determination of electron energy distribution functions in surface wave produced plasmas: 1. Modelling, J. Phys. D: Appl. Phys. 24, 1571–1584.

    Google Scholar 

  45. Godyak, V. A., Piejak, R. B. and Alexandrovich, B. M. (1992) Measurements of electron energy distribution in low-pressure RF discharges, Plasma Sources Sc,. Technol. 1, 36–58.

    Google Scholar 

  46. Grosse, S., Schlüter, H. and Tatarova, E. (1994) On electron energy distribution function measurements in microwave discharges sustained by propagating surface waves, Plasma Sources Sc,. Technol. 3, 545–555.

    Google Scholar 

  47. Moisan, M., Barbeau, C., Claude, R.. Ferreira. C. M., Margot, J.. Paraszczak, J., Sa, A. B., Sauvé, G. and Wertheimer, M. R. (1991) Radio frequency or microwave plasma reactors? Factors determining the optimum frequency of operation, J. Vac. Sc,. Technol. B9, 8 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grozev, D., Kirov, K., Koleva, I., Makasheva, K., Shivarova, A. (1999). Waveguide Stationary and Nonstationary Discharges: Modelling and Experiments. In: Schlüter, H., Shivarova, A. (eds) Advanced Technologies Based on Wave and Beam Generated Plasmas. NATO ASI Series, vol 67. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0633-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0633-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5191-2

  • Online ISBN: 978-94-017-0633-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics