Skip to main content

Mathematical Formulation of a Spectral Tidal Model

  • Chapter
Advanced Physical Oceanographic Numerical Modelling

Part of the book series: NATO ASI Series ((ASIC,volume 186))

Abstract

In this paper the stages in formulating a Galerkin-Spectral model are illustrated by developing a spectral model of the vertical profile of oscillatory flow. Such a simple model is chosen so that the steps in the method can be clearly illustrated. References to the literature are given for general background information; the reader is directed to the second section of this chapter [Davies, 1986b] for the extension to three dimensions. Some results from a three-dimensional tidal model are presented to illustrate oceanographic applications. The objective is to introduce (by references to the literature and a simple example) the Galerkin method to someone new to the topic and to illustrate its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bowden, K. F., L. A. Fairbairn, and P. Hughes, The distribution of shearing stresses in a tidal current, Geophys. J. R. Astr. Soc.,2, 288–305, 1959.

    Google Scholar 

  • Cheng, R. T., T. M. Powell, and T. M. Dillon, Numerical models of wind-driven circulation in lakes, Applied Mathematical Modelling, 1, 141–158, 1976.

    Article  Google Scholar 

  • Connor, J. J., and C. A. Brebbia, Finite element techniques for fluid flow, 307 pp., London, Newnes - Butterworths, 1976.

    Google Scholar 

  • Davies, A. M., A numerical model of the North Sea and its use in choosing locations for the deployment of offshore tide gauges in the JONSDAP ‘76 oceanographic experiment, Dtsch. Hydrogr. Z., 29, 11–24, 1976.

    Article  Google Scholar 

  • Davies, A. M., Application of the Galerkin method to the formulation of a three-dimensional non-linear hydrodynamic numerical sea model, Applied Mathematical Modelling, 4, 245–256, 1980.

    Article  Google Scholar 

  • Davies, A. M., Formulation of a linear three-dimensional hydrodynamic sea model using a Galerkin-Eigenfunction method, Int. J. Num. Meth. in Fluids, 3, 33–60, 1983.

    Google Scholar 

  • Davies, A. M., On determining current profiles in oscillatory flows, in press, Applied Mathematical Modelling 1985.

    Google Scholar 

  • Davies, A. M., Mathematical formulation of a spectral circulation model, this volume, 1986b.

    Google Scholar 

  • Davies, A. M., and G. K. Furnes, Observed and computed M2 tidal current in the North Sea, J. Phys. Oceanogra., 10, 237–257, 1980.

    Article  Google Scholar 

  • Davies, A. M., and I. D. James, Three-dimensional Galerkin-Spectral sea models of the North Sea and German Bight, in North Sea Dynamics, edited by J. Sundermann and W. Lenz, pp. 85–95, Springer-Verlag, 1983.

    Google Scholar 

  • Davies, A. M., and A. Owen, Three-dimensional numerical sea model using the Galerkin method with a polynomial basis set, Appl. Math. Modelling, 3, 421–428, 1979.

    Article  Google Scholar 

  • Fang, G., and T. Ichiye, On the vertical structure of tidal currents in a homogeneous sea, Geophys. J. R. Astr. Soc., 73, 65–82, 1983.

    Article  Google Scholar 

  • Flather, R. A., A tidal model of the northwest European continental shelf, Mem. Soc. Roy. Sci. Liege, 10, 141–164, 1976.

    Google Scholar 

  • Finlayson, B. A., The method of weighted residuals and variational principles, Academic Press, New York, 1972.

    Google Scholar 

  • Gottlieb, D., and S. Orszag, A numerical analysis of spectral methods, NSF-CBMS Monograph No. 26, Soc. Ind. and Appl. Math., Philadelphia, 1977.

    Google Scholar 

  • Gray, W. G., Some inadequacies of finite element models as simulators of two-dimensional circulation, Adv. Water Resources, 5, 171–177, 1982.

    Article  Google Scholar 

  • Grotkop, G., Finite element analysis of long-period water waves, Comput. Meth. Appl. Mech. Eng., 2, 133–146, 1973.

    Article  Google Scholar 

  • Heaps, N. S., and J. E. Jones, Three-dimensional model for tides and surges with vertical eddy viscosity prescribed in two layers. H. Irish Sea with bed friction layer, Geophys. J. R. Astr. Soc., 64, 303–320, 1981.

    Article  Google Scholar 

  • Mathisen, J P., and 0. Johansen, A numerical tidal and storm surge model of the North Sea, Marine Geodesy, 6, 267–291, 1983.

    Article  Google Scholar 

  • Owen, A., A three-dimentional model of the Bristol Channel, J. Phys. Oceanography, 10, 1290–1302, 1980.

    Article  Google Scholar 

  • Prandle, D., The Vertical structure of tidal currents and other oscillatory flows, Continental Shelf Research, 1, 191–207, 1982.

    Article  Google Scholar 

  • Proctor, R., Tides and residual circulation in the Irish Sea: a numerical modelling approach. Ph.D. thesis, Liverpool University, 1981.

    Google Scholar 

  • Schwiderski, E. W., Atlas of ocean tidal Charts and maps, Part 1: the semidiurnal principal lunar tide M2, Marine Geodesy, 6, 219–265, 1983.

    Article  Google Scholar 

  • Smith, J. D., Modelling of sediment transport on continental shelves, in The Sea, 6, edited by E. D. Goldberg et al., pp. 539–578, Wiley-Interscience, 1977.

    Google Scholar 

  • Soulsby, R. L., The bottom boundary layer of shelf seas, in Physical Oceanography of Coastal and Shelf Seas, edited by B. Johns, pp. 189–266, Elsevier Oceanography Series, No. 35, 1983.

    Google Scholar 

  • Strang, G., and G. J. Fix, An analysis of the finite element method, Prentice Hall Inc., Englewood Cliffs, 1973.

    Google Scholar 

  • Wolf, J., Estimation of shearing stresses in a tidal current with application to the Irish Sea, in Marine Turbulence, Proceedings of the 11th’Liege Colloquium on Ocean Hydrodynamics edited by J.C.J. Nihoul, pp. 319–344, Elsevier Oceanography, Series No. 28, 1980.

    Google Scholar 

  • Wolf, J., The variability of currents in shallow seas, Ph.D. thesis, Liverpool University, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davies, A.M. (1986). Mathematical Formulation of a Spectral Tidal Model. In: O’Brien, J.J. (eds) Advanced Physical Oceanographic Numerical Modelling. NATO ASI Series, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0627-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0627-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8428-6

  • Online ISBN: 978-94-017-0627-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics