Skip to main content

Flow cytometric techniques for the detection of microorganisms

  • Chapter
Advanced Flow Cytometry: Applications in Biological Research

Abstract

Flow cytometry (FCM) is a technique, which allows one to analyse cells rapidly and individually, and permits the quantitative analysis of distributions of a property or properties in a population. It therefore offers many advantages over conventional measurements for the analysis of biological cells. Historically the technique has been widely applied for the study of mammalian cells, but its use in microbiology has been more limited; this is mainly a consequence of the smaller size of microbes, which results in the smaller optical signals that can be obtained from them. Developments in light sources and optics, together with brighter, spectrally-diverse dyes have reduced this barrier over recent years and the flow cytometer is now an essential tool in many microbiological research establishments. FCM has an increasing role to play in the detection of microbes in both industrial and clinical settings. Environmental monitoring to prevent outbreaks of human diseases such as cryptosporidiosis and Legionnaires’ disease and to detect acts of biowarfare or bioterrorism are all amenable to flow cytometric study. This review seeks to highlight the role of the flow cytometer in the detection of microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

FACS:

Fluorescence-activated cell sorting

FCM:

Flow cytometry

FITC:

Fluorescein isothiocyanate

References

  1. Howlett NG, Avery SV (1999). Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae. FEMS Microbiol Lett 176 (2): 379–386.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell A, Robertson L, Smith H (1993). Novel methodology for the detection of Cryptosporidium parvum — a comparison of cooled charge coupled devices (CCD) and flow cytometry. Water Science and Technology 27 (3–4): 89–92.

    Google Scholar 

  3. Nebe-von-Caron G, Stephens P, Badley RA (1998). Assessment of bacterial viability status by flow cytometry and single cell sorting. J Appl Microbiol 84 (6): 988–998.

    Article  Google Scholar 

  4. Davey HM, Kaprelyants AS, Weichart DH, Kell DB (1999). Approaches to the estimation of microbial viability using flow cytometry. In: Current Protocols in Cytometry. New York: Wiley, pp 11.3.1–11. 3. 20.

    Google Scholar 

  5. Valdivia RH, Falkow S (1996). Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22(2): 367–378.

    Google Scholar 

  6. Betz JW, Aretz W, Hartel W (1984). Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry 5: 145–150.

    Article  PubMed  CAS  Google Scholar 

  7. Bell PJL, Deere D, Shen J, Chapman B, Bissinger PH, Attfield PV, Veal DA (1998). A flow cytometric method for rapid selection of novel industrial yeast hybrids. Appl Environ Microbiol 64(5): 1669–1672.

    Google Scholar 

  8. Davey HM, Kell DB (1996). Flow cytometry and cell sorting of heterogeneous microbial populations–the importance of single-cell analyses. Microbiol Rev 60 (4): 641–696.

    PubMed  CAS  Google Scholar 

  9. Alvarez-Barrientos A, Arroyo J, Canton R, Nombela C, Sanchez-Perez M (2000). Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 13 (2): 167–195.

    Article  PubMed  CAS  Google Scholar 

  10. Vives-Rego J, Lebaron P, Nebe-von Caron G (2000). Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24 (4): 429–448.

    Google Scholar 

  11. Harris CM, Kell DB (1985). The estimation of microbial biomass. Biosensors 1: 17–84.

    Article  PubMed  CAS  Google Scholar 

  12. Cantinieaux B, Courtoy P, Fondu P (1993). Accurate flow cytometric measurement of bacteria concentrations. Pathobiology 61: 95–97.

    Article  PubMed  CAS  Google Scholar 

  13. Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000). Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243 (1–2): 191–210.

    Article  PubMed  CAS  Google Scholar 

  14. Pettipher GL (1991). Preliminary evaluation of flow cytometry for the detection of yeasts in soft drinks. Lett Appl Microbiol 12: 109–112.

    Article  Google Scholar 

  15. Gunasekera TS, Attfield PV, Veal DA (2000). A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 66 (3): 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  16. Jimenez L (2001). Rapid methods for the microbiological surveillance of pharmaceuticals. PDA J Pharm Sci Technol 55 (5): 278–285.

    PubMed  CAS  Google Scholar 

  17. Jespersen L, Lassen S, Jakobsen M (1993). Flow cytometric detection of wild yeast in lager breweries. Int J Food Microbiol 17: 321–328.

    Article  PubMed  CAS  Google Scholar 

  18. Attfield PV, Kletsas S, Veal DA, van Rooijen R, Bell PJL (2000). Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts. J Appl Microbiol 89 (2): 207–214.

    Article  PubMed  CAS  Google Scholar 

  19. Hewitt CJ, Nebe-Von-Caron G (2001). An industrial application of multiparameter flow cytometry: Assessment of cell physiological state and its appli-cation to the study of microbial fermentations. Cytometry 44 (3): 179–187.

    Article  PubMed  CAS  Google Scholar 

  20. Delanghe JR, Kouri TT, Huber AR, Hannemann-Pohl K, Guder WG, Lun A, Sinha P, Stamminger G, Beier L (2000). The role of automated urine particle flow cytometry in clinical practice. Clin Chim Acta 301 (1–2): 1–18.

    Article  PubMed  CAS  Google Scholar 

  21. Hannemann-Pohl K, Kampf SC (1999). Automation of urine sediment examination: A comparison of the sysmex OF-100 automated flow cytometer with routine manual diagnosis (microscopy, test strips, and bacterial culture). Clinical Chemistry and Laboratory Medicine 37 (7): 753–764.

    Article  PubMed  CAS  Google Scholar 

  22. Eastham RD (1984). Clinical haematology, 6th ed. Bristol: John Wright and Sons.

    Google Scholar 

  23. Mansour JD, Robson JA, Arndt CW, Schulte TE (1985). Detection of Escherichia coli in blood using flow cytometry. Cytometry 6: 186–190.

    Article  PubMed  CAS  Google Scholar 

  24. Yi WC, Hsiao S, Liu JH, Soo PC, Horng YT, Tsai WC, Lai HC, Teng LJ, Hsueh PR, Hsieh RF, Luh KT, Ho SW (1998). Use of fluorescein labelled antibody and fluorescence activated cell sorter for rapid identification of Mycobacterium species. Biochem Biophys Res Commun 250 (2): 403–408.

    Article  PubMed  CAS  Google Scholar 

  25. Shi W, Jewett A, Hume WR (1998). Rapid and quantitative detection of Streptococcus mutans with species-specific monoclonal antibodies. Hybridoma 17 (4): 365–371.

    Article  PubMed  CAS  Google Scholar 

  26. Hugenholtz P, Pace NR (1996). Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotech 14(6): 190–197.

    Article  CAS  Google Scholar 

  27. Amann Rl, Ludwig W, Schleifer KH (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59 (1): 143–169.

    Google Scholar 

  28. Wallner H, Amann R, Beisker W (1993). Optimizing fluorescent in situ hubridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136–143.

    Article  PubMed  CAS  Google Scholar 

  29. Amann RI. Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56 (6): 1919–1925.

    PubMed  CAS  Google Scholar 

  30. Zarda B, Amann R, Wallner G, Schleifer KH (1991). Identification of single bacterial-cells using digoxigenin-labeled, ribosomal-RNA-targeted oligonucleotides. J Gen Microbiol 137 (Pt12): 2823–2830.

    PubMed  CAS  Google Scholar 

  31. Vesey G, Slade JS, Byrne M, Shepherd K, Fricker CR (1993). A new method for the concentration of Cryptosporidium oocysts from water. J Appl Bacteriol 75: 82–86.

    Article  PubMed  CAS  Google Scholar 

  32. Ferrari BC, Vesey G, Davis KA, Gauci M, Veal D (2000). A novel two-color flow cytometric assay for the detection of Cryptosporidium in environmental water samples. Cytometry 41 (3): 216–222.

    Article  PubMed  CAS  Google Scholar 

  33. Ingram M, Cleary TJ, Price BJ, Price RL, Castro A (1982). Rapid detection of Legionella pneumophila by flow cytometry. Cytometry 3 (2): 134–147.

    Article  PubMed  CAS  Google Scholar 

  34. Tyndall RL, Hand Jr. RE, Mann RC, Evans C, Jeringen R (1985). Application of flow cytometry to detection and characterization of Legionella spp. Appl Environ Microbiol 49 (4): 852–857.

    PubMed  CAS  Google Scholar 

  35. Dando M (1994). Biological warfare in the 21st century. London: Brassey’s.

    Google Scholar 

  36. Davey HM, Kell DB (1997). Fluorescent brighteners: Novel stains for the flow cytometric analysis of microorganisms. Cytometry 28 (4): 311–315.

    Article  PubMed  CAS  Google Scholar 

  37. Sincock SA, Kulaga H, Cain M, Anderson P, Stopa PJ (1999). Applications of flow cytometry for the detection and characterization of biological aerosols. Field Analytical Chemistry and Technology 3 (4–5): 291–306.

    Article  CAS  Google Scholar 

  38. Stopa PJ (2000). The flow cytometry of Bacillus anthraces spores revisited. Cytometry 41(4): 237–244.

    PubMed  CAS  Google Scholar 

  39. Davey HM, Kell DB (2000). A portable flow cytometer for the detection and identification of microorganisms. In: Stopa PJ, Bartoszcze MA (eds), Rapid Methods for Monitoring the Environment for Biological Hazards. Dordrecht: Kluwer, pp 159–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel M. Davey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davey, H.M. (2003). Flow cytometric techniques for the detection of microorganisms. In: Sobti, R.C., Krishan, A. (eds) Advanced Flow Cytometry: Applications in Biological Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0623-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0623-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6368-7

  • Online ISBN: 978-94-017-0623-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics