Skip to main content

Abstract

Practically all vertebrates have functional eyes, and in all these the site of the photochemical reactions that start the process of vision are within specialised neurons in the retina These cells are the photoreceptors or visual cells, which include the two broad classes, rods and cones. The visual pigments, molecules of which undergo reversible structural changes in response to light, at least in rods, are located in the membranes of bilayer discs, stacks of which make up most of the portion of the cell known as the outer segment. The spectral properties of the pigments have been correlated with environmental parameters, notably by Lythgoe (1979), and the connectivities and arrangements within the retina and visual pathways have been studied in depth by more authors than can be referred to here. Retinal photoreceptors, while all possessing common features, vary widely in size and arrangement between different retinas, and show various features that are developed to a greater or lesser extent. Are all these differences concerned with phylogeny, or are some responses to environmental factors? Some adaptations certainly correlate well with environmental conditions, such as the devices for optimising sensitivity in deep-sea fishes. Other adaptations have developed in a single group only, though in response to a problem common to many groups, e.g. cone mosaics in teleosts. This chapter will describe the features of visual cells and their sometimes specialised arrangements within retinas, and attempt to relate the structural features to the habitat of the animals in which they are found. Though some conclusions can be drawn with confidence, it will be apparent that neat answers are often lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M. A. and Anctil, M. (1976) Retinas of fishes. Berlin, Heidelberg, New York. Springer-Verlag.

    Google Scholar 

  • Beaudet, L., Browman, H. I. and Hawryshyn, C. W. (1993) Optic nerve response and retinal structure in rainbow trout of different sizes. Vision Res. 33, 1739–1746.

    Article  PubMed  CAS  Google Scholar 

  • Besharse, J. C. (1982) The daily light-dark cycle and rhythmic metabolism in the photoreceptor-pigment epithelial complex. In: Progress in retinal research. Vol. 1. Osborne, N and Chader, G. eds. Oxford, Pergamon Press.

    Google Scholar 

  • Besharse, J. C. (1986) Photosensitive membrane turnover: Differentiated membrane domains and cell-cell interactions. In The retina: A model for cell biology studies: 1. Adler, R. and Farber, D. eds. pp. 297–352 Orlando, Academic Press.

    Google Scholar 

  • Besharse, J. C. and Wetzel, M. G. (1995) Immunocytochemical localization of opsin in rod photoreceptors during periods of rapid disc assembly. J. Neurocytol. 24, 371–388.

    Article  PubMed  CAS  Google Scholar 

  • Best, A. C. G. and Nicol, J. A. C. (1978) Notes on the retina and tapetum lucidum of Howella (Teleostei: Cheilodipteridae). J. Mar. Biol. Ass. U.K. 58, 735–738.

    Article  Google Scholar 

  • Borwein B, (1981) The retinal receptor: A description. In: Vertebrate photoreceptor optics. Enoch, J. M. and Tobey, F. L. Jr., eds. Berlin, Heidelberg, New York. Springer-Verlag.

    Google Scholar 

  • Bowmaker, J. K, Kovach, J. K., Whitmore, A. V. and Loew, E. R. (1993) Visual pigments and oil droplets in genetically manipulated and carotenoid deprived quail.: A microspectrophotometric study. Vision Res. 33, 571–578.

    Article  PubMed  CAS  Google Scholar 

  • Brauer, A. (1908) Die Tiefseefische. II. Anatomischer Teil. B. Augen. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia’ 1898–1899. Vol. 15. Jena. Fischer Verlag.

    Google Scholar 

  • Burnside, B, Wang E., Pagh-Roehl, K. and Rey, H. (1993) Retinomotor movements in isolated teleost retinal cone inner-outer segment preparations (CIS—COS): Effects of light, dark and dopamine. Exp. Eye Res. 57, 709–722.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, D. A. and Easter, S. S. Jr. (1995) Cone photoreceptor regeneration in adult fish retina: Phenotypic determination and mosaic pattern formation. J. Neurosci. 15, 2255–2271.

    PubMed  CAS  Google Scholar 

  • Crescitelli, F. (1972) The visual cells and visual pigments of the vertebrate eye. In. Handbook of Sensory Physiology. Vol. VIUI. Dartnall, H. J. ed. pp. 245–363. Berlin, Heidelberg, New York. Springer-Verlag.

    Google Scholar 

  • Denton, E. J. (1990) Light and vision at depths greater than 200 metres. In: Light and life in the sea. Herring, P. J., Campbell, A. K., Whitfield, M. and Maddock, L. eds. pp. 127–148. Cambridge, Cambridge University Press.

    Google Scholar 

  • Denton, E. J. and Locket, N. A. (1989) Possible wavelength discrimination by multibank retinae in deep-sea fishes. J. Mar. Biol. Ass. U.K. 69, 409–435.

    Article  Google Scholar 

  • Dowling, J. E. (1987) Retinal synapses. In: Dowling, J. E. (ed.) The retina: an approachable part of the brain. pp. 46–62. Cambridge, Mass. Cambridge University Press.

    Google Scholar 

  • Dunn, R. F. (1969) The dimensions of rod outer segments related to light absorption in the gecko retina. Vision Res. 9, 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Engström, K. (1963) Cone types and cone arrangements in teleost retinae. Acta Zool., Stockh. 44, 110–129.

    Google Scholar 

  • Evans, B. I. and Fernald, R. D. (1993) Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus). Vis. Neurosci. 10, 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  • Fineran, B. A. and Nicol, J. A. C. (1974) Studies on the eyes of New Zealand parrot-fishes (Labridae). Proc. R. Soc. Lond. B. 186, 217–247.

    Article  PubMed  CAS  Google Scholar 

  • Fineran, B. A. and Nicol, J. A. C. (1976) Novel cones in the retina of the anchovy (Anchoa). J. Ultrastruct. Res. 54, 296–303.

    Article  PubMed  CAS  Google Scholar 

  • Fineran, B. A. and Nicol, J. A. C. (1977) Studies on the eyes of anchovies Anchoa mitchilli and A. hepsetus (Engraulidae) with particular reference to the pigment epithelium. Phil. Trans. R. Soc. Lond. B. 276, 321–350.

    Article  CAS  Google Scholar 

  • Fineran, B. A. and Nicol, J. A. C. (1978) Studies on the photoreceptors of Anchoa mitchilli and A. hepsetus (Engraulidae) with particular reference to cones. Phil. Trans. R. Soc. Lond. B 283, 25–60.

    Article  Google Scholar 

  • Fox, R, Lehmkuhle, S. W. and Westendorf, D. H. (1976) Falcon visual acuity. Science (NY). 192, 263–265.

    Article  CAS  Google Scholar 

  • Franz, V. (1921) Zur mikroskopischen Anatomie der Mormyriden. Zool. Jber. 42, 91–148.

    Google Scholar 

  • Fröhlich, E., Negishi, K. and Wagner, H-J. (1995) Patterns of rod proliferation in deep-sea fish retinae. Vision Res. 35, 1799–1811.

    Article  PubMed  Google Scholar 

  • Goede, P and Kolb, H. (1994) Identification of the synaptic pedicles belonging to the different spectral types of photoreceptor in the turtle retina. Vision Res. 34, 2801–2811.

    Article  PubMed  CAS  Google Scholar 

  • Herman, K. G. and Steinberg, R. H. (1982) Phagosome movement and the diurnal pattern of phagocytosis in the tapetal retinal pigment epithelium of the opossum. Invest. Ophthal. Vis. Sci. 23, 277–290.

    CAS  Google Scholar 

  • Hogan, M. J, Alvarado, J. A. and Weddell, J. E. (1971) Histology of the human eye. Philadelphia, London, Toronto. W. B. Saunders.

    Google Scholar 

  • Jin, J., Jones, G. J. and Cornwall, M. C. (1994) Movement of retinal along cone and rod photoreceptors. Vis. Neurosci. 11, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, E. (1932) Progress in biological inquiries. Appendix III. Rep. U.S. Comm. Fish. 1931. 441–569.

    Google Scholar 

  • Kalberer, M. and Pedler, C. (1963) The visual cells of the alligator: an electron microscopic study. Vision Res. 3, 323–329.

    Article  Google Scholar 

  • Kaplan, M. W. (1981) Light cycle-dependent axial variations in frog outer segment structure. Invest. Ophthalmol. Vis. Sci. 21, 395–402.

    PubMed  CAS  Google Scholar 

  • Kunz, Y. W. (1980) Cone mosaics in a teleost retina: changes during light and dark adaptation. Experientia 36, 1371–1374.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, Y. W. (1983) Diurnal changes of cone mosaic in a teleost retina. Experientia 39, 1049–1050.

    Article  Google Scholar 

  • Kunz, Y. W. and Regan, C. (1973) Histochemical investigations into the lipid nature of the oil-droplet in the retinal twin cones of Lebistes reticulatus (Peters). Rev. suisse Zool. 80, 699–703.

    PubMed  CAS  Google Scholar 

  • Land, M. F. (1981) Optics and vision in invertebrates. In: Handbook of Sensory Physiology, VII/6B. Ed. Autrum, H. pp. 471–593. Berlin, Heidelberg, New York. Springer-Verlag.

    Google Scholar 

  • LaVail, M. M. (1976) Rod outer segment disc shedding in relation to cyclic lighting. Exp. Eye Res. 23, 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Locket, N. A. (1971) Retinal anatomy in some scopelarchid deep-sea fishes. Proc. R. Soc. Lond. B. 178, 161–184.

    Article  PubMed  CAS  Google Scholar 

  • Locket, N. A. (1973) Retinal structure in Latimeria chalumnae. Phil. Trans. R. Soc. Lond. B. 266, 493–521.

    Article  CAS  Google Scholar 

  • Locket, N. A. (1976) Receptor grouping in fish retinae. J. Anat. 122, 713.

    Google Scholar 

  • Locket, N. A. (1977) Adaptation to the deep-sea environment. In Handbook of Sensory Physiology, VII/5. Ed. Crescitelli, F. pp. 67–192. Berlin, Heidelberg. Springer-Verlag.

    Google Scholar 

  • Locket, N. A. (1980) Variation of architecture with size in the multiple-bank retina of a deep-sea teleost, Chauliodus sloani. Proc. R. Soc. Lond. B. 208, 223–242.

    Article  Google Scholar 

  • Locket, N. A. (1985) The multiple bank rod fovea of Bajacalifornia drakei, an alepocephalid deep-sea teleost. Proc. R. Soc. Land. B. 224, 7–22.

    Article  Google Scholar 

  • Locket, N. A. (1992) Problems of deep foveas. Aust. N. Z. J. Ophthal. 20, 281–295.

    Article  CAS  Google Scholar 

  • Lythgoe, J. N. (1972) The adaptation of visual pigment to the photic environment. In Handbook of Sensory Physiology, VII/I. Dartnell, H. J. A. ed. pp. 566–603. Berlin: Springer-Verlag.

    Google Scholar 

  • Lythgoe, J. N. (1979) The ecology of vision. Oxford. Clarendon Press.

    Google Scholar 

  • MacNichol, E. E, Kunz, Y. W., Levine, J. S., Harosi, F. I. and Collins, B. A. (1978) Ellipsosomes: organelles containing a cytochrome-like pigment in the retinal cones of certain fishes. Science 200, 549–551.

    Article  PubMed  CAS  Google Scholar 

  • Maier, E. J. and Bowmaker, J. K. (1993) Colour vision in the passeriform bird, Leiothrix lutea: Correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. J. Comp. Physiol A. 172, 295–301.

    Article  Google Scholar 

  • Majima, K. (1925) Studien über die Struktur der Zehzellen and der Pigmentepithelzellen der Froschnetzhaut. Albrecht von Graefe’s Arch. Ophthal. 115, 286–304.

    Google Scholar 

  • McDevitt, D. S, Brahma, S. K., Jeanny, J. C. and Hicks, D. (1993) Presence and foveal enrichment of rod opsin in the `all cone’ retina of the American chameleon. Anat. Rec. 237, 299–307.

    Article  PubMed  CAS  Google Scholar 

  • McEwan, M. R. (1938) A comparison of the retina of the mormyrids with that of various other teleosts. Acta Zool., 19, 427–465.

    Article  Google Scholar 

  • Miller, W. H. and Snyder, A. W. (1977) The tiered vertebrate retina. Vision Res. 17, 239–256.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, K and Takei, Y. (1975) Retinal glycogen. In Structure of the Eye. Yamada, E. and Takei, Y. eds. pp. 341–350. Tokyo. Tokyo University.

    Google Scholar 

  • Moore, G. A. (1944) The retinae of two north American teleosts, with special reference to their tapeta lucida. J. comp. Neural., 80, 369–379.

    Article  Google Scholar 

  • Munk, O. (1959) The eyes of Ipnops murrayi Gunther 1887. Galathea Rep. 3, 79–87.

    Google Scholar 

  • Munk, O. (1966) Ocular anatomy of some deep-sea teleosts. Dana Rep. 70, 1–62.

    Google Scholar 

  • Munk, O. (1975) On the eyes of two notosudid teleosts, Scopelosaurus hoedti and Ahliesaurus berryi. Vidensk. Meddr. dansk naturh. Foren. 138, 87–125.

    Google Scholar 

  • Munk, O. (1977) The visual cells and retinal tapetum of the foveate deep-sea fish Scopelosaurus lepidus (Teleostei). Zoomorph. 87, 21–49.

    Article  Google Scholar 

  • Muntz, W. R. A. (1972) Inert absorbing and reflecting pigments. In Handbook of Sensory Physiology, VII/I. Dartnall, H. J. A. ed. Berlin. Springer-Verlag.

    Google Scholar 

  • Partridge, J. C, Shand, J., Archer, S. N., Lythgoe, J. N. and van Groningen-Luyben W. A. H. M. (1989) Interspecific variation in the visual pigments of deep-sea fishes. J. comp. Physiol. A 164, 513–529.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, J. C., Archer, S. N. and van Oostrum, J. (1992) Single and multiple visual pigments in deep-sea fishes. J. Mar. Biol. Ass. U.K. 72, 113–130.

    Article  Google Scholar 

  • Pumphrey, R. J. (1948) The theory of the fovea. J. Exp. Biol. 25, 299–312.

    Google Scholar 

  • Richardson, T. M. (1969) Cytoplasmic and ciliary connections between the inner and outer segments of mammalian visual receptors. Vision Res. 9, 727–731.

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R. W. (1973) The Vertebrate Retina. San Francisco. Freeman, W. H. Sarantis, M and Mobbs, P. (1992) The spatial relationship between Müller cell processes and the photoreceptor output synapse. Brain Res. 584, 299–304.

    Google Scholar 

  • Schnapf, J. L. and Baylor, D. A. (1897) How photoreceptor cells respond to light. Sci. Amer. 256, 40–47.

    Article  Google Scholar 

  • Schremser, J. and Williams, T. P. (1995) Rod outer segment (ROS) renewal as a mechanism for adaptation to a new intensity environment. I. Rhodopsin levels and ROS length. Exp. Eye Res. 61, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, F and Drenckhahn, D. (1993) Intermediate stages in the disassembly of synaptic ribbons in cone photoreceptors of the crucian carp, Carassius auratus. Cell Tiss. Res. 272, 487–490.

    Article  Google Scholar 

  • Schmitz, E, Kirsch, M. and Wagner, H-J. (1989) Calcium modulated synaptic ribbon dynamics a pharmacological and electron spectroscopic study. Eur. J. Cell Biol. 49, 207–212.

    CAS  Google Scholar 

  • Schultze, M. (1866) Anatomie and Physiologie der Netzhaut. Arch. Mikr. Anat. Entw. Mech. 2, 175–286.

    Article  Google Scholar 

  • Shapley, R. and Gordon, J. (1980) The visual sensitivity of the retina of the conger eel. Proc. R. Soc. Lond. B. 209, 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, A. W. and Miller, W. H. (1978) Telephoto lens system of falconiform eyes. Nature, Lond. 275, 127–129.

    Article  CAS  Google Scholar 

  • Spira, A. W. and Millman, G. E. (1979) The structure and distribution of the cross-striated fibril and associated membranes in guinea pig photoreceptors. Amer. J. Anat. 155, 319–338.

    Article  PubMed  CAS  Google Scholar 

  • Townes-Anderson, E. (1995) Intersegmental fusion in vertebrate rod photoreceptors. Invest. Ophthal. Vis. Sci. 36, 1918–1933.

    PubMed  CAS  Google Scholar 

  • Wagner, H-J. (1973) Darkness-induced reduction of the number of synaptic ribbons in fish retina. Nature New Biol. 246, 53–55.

    PubMed  CAS  Google Scholar 

  • Wagner, H-J. (1990) Retinal structure of fishes. In The Visual System of Fish. Douglas, R. and Djamgoz, M. eds. pp. 109–157. London. Chapman and Hall.

    Chapter  Google Scholar 

  • Walls, G. L. (1942) The vertebrate eye and its adaptive radiation. Michigan. Cranbrook Institute of Science.

    Book  Google Scholar 

  • Waterman, T. H. (1981) Polarization sensitivity. In Handbook of Sensory Physiology, Vol, VII/6B. Autrum, H. pp. 281–469. Berlin, Heidelberg, New York. Springer-Verlag.

    Google Scholar 

  • Young, R. W. (1978) The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Invest. Ophthalmol. Vis. Sci. 17, 105–116.

    PubMed  CAS  Google Scholar 

  • Young, R. W. and Bok, D. (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J. Cell Biol. 42, 392–403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Locket, N.A. (1999). Vertebrate photoreceptors. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics