Skip to main content

A review of vertebrate and invertebrate ocular filters

  • Chapter
Book cover Adaptive Mechanisms in the Ecology of Vision

Abstract

The spectral information available to an animal’s visual system depends both on the wavelengths reaching its outer segments and the visual pigments contained within them. The former is governed not only by the chromatic stimuli present in the environment, but also by the degree to which these are modified through intraocular filters, before being absorbed by the visual pigments. Although the ocular media of the majority of animals are transparent to light above about 310 nm, their primary function being either refractive or nutritive, in some, pigments are present that filter the spectral content of the light reaching the retina. Light impinging on the visual pigments may have its spectrum further modified by both filters within the retina itself and by reflective structures behind the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadi, R. V. and Cox, M. J. (1992) The distribution of macular pigment in human albinos. Investigative Ophthalmology and Visual Science, 33(3), 494497.

    Google Scholar 

  • Ahnelt P. K., Hokoc, J. N. and Rohtich, P. (1995) Photoreceptors in a primitive mammal, the South American Opossum, Didelphis marsupialis aurita–characterization with anti–opsin immunolabeling. Visual Neuroscience, 12 (5), 793–804.

    Article  PubMed  CAS  Google Scholar 

  • Alpern, M., Fulton, A. B. and Baker, B. N. (1987) `Self–screening’ of rhodopsin in rod outer segments. Vision Research,27(9), 1459–1470.

    Google Scholar 

  • Ambach, W., Blumthaler, M., Schöpf, T., Ambach, E., Katzgraber, F., Daxecker, E and Daxer, A. (1994) Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation. Documenta Ophthalmologica, 88, 165–173.

    Google Scholar 

  • Anctil, M. and Ali, M. A. (1976) Cone droplets of mitochondrial origin in the retina of Fundulus heteroclitus (Pisces: Cyprinodontidae). Zoomorphologie, 84, 103–111.

    Google Scholar 

  • Appleby, S. J. and Muntz, W. R. A. (1979) Occlusable yellow corneas in Tetradontidae. Journal of Experimental Biology, 83, 249–259.

    Google Scholar 

  • Arikawa, K. and Uchiyama, H. (1996) Red receptors dominate the proximal tier of the retina in the butterfly Papilio xuthus. Journal of Comparative Physiology, A 178, 55–61.

    Google Scholar 

  • Arnott, H. J., Best, A. C. G., Ito, S. and Nicol, J. A. C. (1974) Studies on the eyes of catfishes with special reference to the tapetum lucidum. Pmceedings of the Royal Society of London B, 186, 13–36.

    Article  CAS  Google Scholar 

  • Ashcroft, N. R. and Lythgoe, J. N. (1991) Ionic basis for colour changes in the iridescent cornea of the sand goby ( Pomatoschistus minutus ). Pigment Cell Research, 4, 209–215.

    Google Scholar 

  • Avery, J. A. and Bowmaker, J. K. (1982) Visual pigments in the four–eyed fish, Anableps anableps. Nature, 298, 62–64.

    Article  CAS  Google Scholar 

  • Bandai, K., Arikawa, K., and Eguchi, E. (1992) Localisation of spectral receptors in the omatidium of butterfly compound eye determined by polarisation sensitivity Journal of Comparative Physiology A, 171, 289–297.

    Google Scholar 

  • Bando, M., Nakajima, A. and Satoh, K. (1981) Spectrophotometric estimation of 3–OH L–Kynurenine Oß–Glucoside in the human lens. Journal of Biochemistry, 89, 103–109.

    Google Scholar 

  • Barber, V. C. and Wright, D. E. (1969) The fine structure of the eye and optic tentacle of the mollusc Cardium edule. Journal of Ultrastructure Research, 26, 515–528.

    Article  CAS  Google Scholar 

  • Barlow, H. B. (1982) What causes trichromacy? A theoretical analysis using combfiltered spectra. Vision Research, 22, 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Begin, M. T. and Handford, P. (1987) Comparative study of retinal oil droplets in grebes and coots. Canadian Journal of Zoology, 65, 2105–2110.

    Article  Google Scholar 

  • Berger, E. R. (1966) On the mitochondrial origin of oil droplets in the retinal double cone inner segments. Journal of Ultrastructure Research, 14, 143–157.

    Google Scholar 

  • Bernard, G. D. (1967) Structural and functional adaptation in a visual system. Endeavour. 26, 79–84. Bernard, G. D. and Miller, W. H. (1968) Interference filters in the comeas of diptera. Investigative Opthalmology, 7 (4), 416–434.

    Google Scholar 

  • Bernard, G. D. and Miller, W. H. (1970) What does antenna engineering have to do with insect eyes? IEEE Student Journal, Jan–Feb.

    Google Scholar 

  • Bernard, G. D. and Wehner, R. (1977). Functional similarities between polarisation vision and colour vision. Vision Research, 17:1019–1028.

    Google Scholar 

  • Bernard, G. D., Miller, W. H. and Moller, A. R. (1965) The insect corneal nipple array. Acta Physiologica Scandinavia, 63 (243), 1–77.

    Google Scholar 

  • Bernstein, P. S., Balashov, N. A., Tsong, E. D. and Rando, R. R. (1997) Retinal tubulin binds macular carotenoids. Investigative Ophthalmology and Visual Science, 38 (1), 167–175

    PubMed  CAS  Google Scholar 

  • Bertrand, D., Fuortes, G. and Muri, R. (1979) Pigment transformation and electrical responses in retinula cells of drone, Apis mellifera. Journal of Physiology, 296, 431–441.

    Google Scholar 

  • Best, A. C. G. and Nicol, J. A. C. (1980) Eyeshine in fihses. A review of ocular reflectors. Canadian Journal of Zoology, 58 (6), 945–956.

    Article  PubMed  CAS  Google Scholar 

  • Best, A. C. G. and Nicol, J. A. C. (1984) Red pigment epithelium of fish eyes. Journal of the Marine Biological Association of the United Kingdom, 64, 909–917.

    Google Scholar 

  • Boetmer, E. A. and Wolter, J. R. (1962) Transmission of the ocular media. Investigative Ophthalmology, 1 (6), 776–783.

    Google Scholar 

  • Bone, R. A. and Lamdrum, J. T. (1984) Macular pigment in Henle fiber membranes–a model for Haidinger brushes. Vision Research,24(2), 103–108.

    Google Scholar 

  • Bone, R. A., Landrum, J. T. and Tarsis, S. L. (1985) Preliminary identification of the human macular pigment. Vision Research, 25 (11), 1531–1535.

    Article  PubMed  CAS  Google Scholar 

  • Bone, R. A., Landrum, J. T. and Cains, A. (1992) Optical density spectra of the macular pigment in vivo and in vitro. Vision Research,32(1), 105–110.

    Google Scholar 

  • Bone, R. A., Landrum, J. T., Fernandez, L. and Tarais, S. L. (1988) Analysis of the macular pigment by HPLC: retinal distribution and age study. Investigative Ophthalmology and Visual Science, 29 (6), 843–849.

    PubMed  CAS  Google Scholar 

  • Bone, R. A., Landrum, J. T., Hirne, G. W., Cains, A. and Zamor, J. (1993) Stereochemistry of the human macular carotenoids. Investigative Ophthalmology and Visual Science, 34(6), 2033–2040.

    Google Scholar 

  • Borwein, B. and Hollenberg, M. J. (1973) The photoreceptors of the `four–eyed’ fish Anableps anableps L. Journal of Morphology, 140, 405–441.

    Article  Google Scholar 

  • Boulton, M., Docchio, E, Dayhew–Barker, P., Ramponi, R. and Cubeddu, R. (1990) Age–related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Research, 30 (9), 1291–1303.

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker, J. K. (1977) The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Research, 17, 1129–1138.

    Google Scholar 

  • Bowmaker, J. K. (1979) Visual pigments and oil droplets in the pigeon retina, as measured by microspectrophotometry, and their relationship to spectral sensitivity, in Neural Mechanisms of Behaviour in the Pigeon (ed A. M. Granda and J. H. Maxwell), Plenum Press, New York, pp. 327–351.

    Google Scholar 

  • Bowmaker, J. K. (1980) Colour vision in birds and the role of oil droplets. Trends in Neuroscience, 3, 196–199.

    Google Scholar 

  • Bowmaker, J. K. (1983) Trichromatic colour vision: why only three receptor channels? Trends in Neuroscience, 6, 41–43.

    Google Scholar 

  • Bowmaker, J. K. (1990) Visual pigments of fishes. In The Visual System of fish (Douglas, R. H. and Djamgoz, M. B. A.), Chapman and Hall, London. pp. 81–107.

    Chapter  Google Scholar 

  • Bowmaker, J. K. (1991a) The evolution of vertebrate visual pigments and photoreceptors, in Vision and Visual Dysfunction volume 2: Evolution of the Eye and Visual System, (eds J. R. Cronly–Dillon and R. L. Gregory ), CRC Press, Boca Raton, pp. 63–81.

    Google Scholar 

  • Bowmaker, J. K. (1991b) Visual pigments, oil droplets and photoreceptors, in Vision and Visual Dysfunction volume 6: The Perception of Colour (ed P. Gouras), CRC Press, Boca Raton, pp. 108–127.

    Google Scholar 

  • Bowmaker, J. K. and Knowles, A. (1977) The visual pigments and oil droplets of the chicken retina. Vision Research, 17, 755–764.

    Google Scholar 

  • Bowmaker, J. K., Dartnall, H. J. A. and Herring, P. J. (1988) Longwave–sensitive visual pigments in some deep–sea fishes: segregation of `paired’ rhodopsins and porphyropsins. Journal of Comparative Physiology A, 163, 685–698.

    Google Scholar 

  • Bowmaker, J. K., Astell, S., Hunt, D. M. and Mollon, J. D. (1991) Photosensitive and photostable pigments in the retinae of old world monkeys. J. Exp. Biol, 156, 1–19.

    PubMed  CAS  Google Scholar 

  • Bowmaker, J. K., Kovach, J. K., Whitmore, A. V. and Loew, E. R. (1993) Visual pigments and oil droplets in genetically manipulated and carotenoid deprived quial: a microspectrophotometric study. Vision Research,33(5/6), 571–578.

    Google Scholar 

  • Braekevelt, C. R. (1993) Fine structure of the tapetum Lucidum of the Paca (Cuniculus paca). Acta Anatomica, 146 (4), 244–250.

    Article  PubMed  CAS  Google Scholar 

  • Brainard, G. C., Barker, F. M., Hoffman, R. J., Stetson, M. H., Hanifin, J. P., Podolin, P. L. and Rollag, M. D. (1994) Ultraviolet regulation of neuroendocrine and circadian physiology in rodents Vision Research 34(11), 1521–1533.

    Google Scholar 

  • Burton, G. W. and Ingold, K. U. (1984) ß–carotene: an unusual type of lipid antioxidant. Science, 224, 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Chou, B. R. and Cullen, A. P. (1984) Spectral transmittance of the ocular media of the thirteen–lined ground squirrel ( Spermophilus tridecemlineatus ). Canadian Journal of Zoology, 62, 825–830.

    Google Scholar 

  • Collier, R. J., Waldron, W. R. and Zigman, S. (1989) Temporal sequence of changes to the Grey squirrel retina after near–UV exposure. Investigative Ophthalmology and Visual Science,30(4), 631–637.

    Google Scholar 

  • Collin, H. B. and Collin, S. P. (1996) The fine structure of the cornea of the Salamanderfish, Lepidogalaxias salamandroides (Lepidogalaxiidae, Teleostei). Cornea, 15 (4), 414–426.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, G. E. and Robson, J. G. (1969a) The yellow colour of the lens of the grey squirrel ( Sciurus carolinensis leucotis ). Journal of Physiology, 203, 403–410.

    Google Scholar 

  • Cooper, G. F. and Robson, J. G. (1969b) The yellow colour of the lens of man and other primates. Journal of Physiology, 203, 411–417.

    Google Scholar 

  • Couillard, P. (1984) Photoreception in Protozoa, an overview. In: Photoreception and vision in invertebrates. (ed. Ali, B ). Plenum, New York.

    Google Scholar 

  • Cronin, T. W. and Marshall, N. J. (1989a) A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature, 339, 137–140.

    Article  Google Scholar 

  • Cronin, T. W. and Marshall, N. J. (1989b) Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. Journal of Comparative Physiology A, 166, 261–275.

    Google Scholar 

  • Cronin, T. W., Marshall, N. J. and Caldwell, R. L. (1994a) The intrarhabdomal filters in the retinas of mantis shrimps. Vision Research, 34, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, T. W., Marshall, N. J. and Caldwell, R. L. (1994b) The retinas of mantis shrimps from low light environments (Crustacea; Stomatopoda; Gonodactylidae). Journal of Comparative Physiology A, 174, 607–619.

    Google Scholar 

  • Cronin T. W., Marshall N. J., Caldwell R. L. and Shashar N (1994c) Specialisation of retinal function in the compound eyes of mantis shrimps. Vision Research, 34, 2639–2656.

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H. J. A., Arden, G. B., Ikeda, H., Luck, C. P., Rosenberg, M. E., Pedler, C. M. H. and Tansley, K. (1965) Anatomical, electrophysiological and pigmentary aspects of vision in the bush baby: an interpretative study. Vision Research, 5, 399–424.

    Article  PubMed  CAS  Google Scholar 

  • Dartnall, H. J. A., Bowmaker, J. K. and Mollon, J. D. (1983) Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society B 220, 115–130.

    Google Scholar 

  • Denton, E. J. (1955) Absorption du cristallin de Rana esculenta et d’ Anguilla vulgaris. Bulletin du Muséum, 2e série, t. XXVII, 5, 418–425.

    Google Scholar 

  • Denton, E. J. (1970) On the organization of reflecting surfaces in some marine animals. Philosophical Transactions of the Royal Society of London B,. 258, 285–313.

    Article  CAS  Google Scholar 

  • Denton, E. J. (1990). Light and vision at depths greater than 200m. In: Light and life in the sea (ed Herring, P. J. et al) Cambridge University Press, Cambridge, pp. 127–148.

    Google Scholar 

  • Denton, E. J. and Nicol, J. A. C. (1964) The choroidal tapeta of some cartilaginous fishes ( Chondrichthyes ). Journal of the Marine Biological Association of the United Kingdom, 44, 219–258.

    Google Scholar 

  • Denton, E. J. and Warren, F. J. (1968) Eyes of the Histioteuthidae. Nature 219, 400–401.

    Article  PubMed  CAS  Google Scholar 

  • Denton, E. J. and Herring, P. (1971) Report to the council. Journal of the Marine Biological Association of the United Kingdom, 51, 1035.

    Google Scholar 

  • Denton, E. J. and Locket, N. A. (1989) Possible wavelength discrimination by multibank retinae in deep–sea fishes. Journal of the Marine Biological Association of the United Kingdom, 69, 409–435.

    Article  Google Scholar 

  • Denton, E. J., Herring, P J, Widder, E. A., Latz, M. F., and Case, J. F. (1985) The role of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proceedings of the Royal Society of London B, 225, 63–97.

    Google Scholar 

  • Dodt, E. and Walther, J. B. (1958) Netzhautsensitivität, Linsenabsorption und physikalische Lichstreuung: der skotopische Dominator der Katze in sichtbaren und ultravioletten Spektralbereich. Pflügers Archive, 266, 167–174.

    Article  CAS  Google Scholar 

  • Douglas, R. H. (1982) The function of the photomechanical movements in the retina of the rainbow trout ( Salmo gairdneri ). Journal of Experimental Biology, 96, 389–403.

    Google Scholar 

  • Douglas, R. H. (1987) Ocular lens diameter as an indicator of age in brown trout, Salmo trutta. Journal of Fish Biology, 31, 835–836.

    Google Scholar 

  • Douglas, R. H. (1989) The spectral transmission of the lens and cornea of the brown trout (Salmo trutta) and Goldfish (Carassins auratus) effect of age and implications for ultraviolet sensitivity. Vision Research,29(7), 861–869.

    Google Scholar 

  • Douglas, R. H. and McGuigan, C. M. (1989) The spectral transmission of freshwater teleost ocular media: an interspecific comparison and a guide to potential ultraviolet sensitivity. Vision Research,29(7), 871–879.

    Google Scholar 

  • Douglas, R. H. and Thorpe, A. (1992) Short wave absorbing pigments in the ocular lenses of deep–sea teleosts. Journal of the Marine Biological Association of the United Kingdom, 72, 93–112.

    Google Scholar 

  • Douglas, R. H. and Thorpe, A. (1994) Absorbance vs transmission: species and age–a response. Vision Research, 34 (19), 2503–2504.

    Google Scholar 

  • Douglas, R. H., Partridge, J. C. and Hope, A. J. (1995) Visual and lenticular pigments in the eyes of demersal deep–sea fishes. Journal of Comparative Physiology A, 177, 111–122.

    Article  Google Scholar 

  • Douglas, R. H., Partridge, J. C., Dulai, K., Hunt, D., Mullineaux, C. W., Tauber, A. and Hynninen, P. H. (1998) Dragon fish see using chlorophyll4.

    Article  CAS  Google Scholar 

  • Dunlap, W. C., Williams, D. Mc.B., Chalker, B. E. and Banaszak, A. T. (1989) Biochemical photoadaptation in vision: UV–absorbing pigments in fish eye tissues. Comparative Biochemistry and Physiology, 93B, 601–607.

    Google Scholar 

  • Eakin, R. M. (1972) Structure of invertebrate photoreceptors. In: Handbook of sensory physiology. VIU1. (ed. Dartnall, H. J. A. ), Springer, Berlin, Heidelberg, New York. pp. 625–684.

    Google Scholar 

  • Ellingson, J. M., Fleishman, L. J. and Loew, E. R. (1995) Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. Journal of Comparative Physiology A, 177, 559–567.

    CAS  Google Scholar 

  • Emmerton, J., Schwemer, J., Muth, I. and Schlecht, R (1980) Spectral transmission of the ocular media of the pigeon (Columba livia). Investigative Ophthalmology and Visual Science,19(11), 1382–1387.

    Google Scholar 

  • Exner, S. (1891) Die physiologie der facettirten augen von krebsen und insecten. Deuticke. Liepsig, Wein.

    Book  Google Scholar 

  • Fahrenbach, W. H. (1964) Fine structure of a nauplius eye. Zeitschrift fiir Zellfoschung, 62, 182–197.

    Google Scholar 

  • François, J. and Neetens, A. (1974) Comparative anatomy of the vascular supply of the eye in vertebrates, in The Eye, volume 5 (eds H. Dayson and L. T. Graham, Jr.), Academic Press, New York and London. pp. 1–70.

    Google Scholar 

  • Gamburtseva, A. G., Gnyubkina, V. P., Kondrashev, S. L. and Orlov, O. Yu. (1979) Chromatophores and colouration of cornea of fishes of the sea of Japan. Soviet Journal of Marine Biology, 5 (6), 495–503.

    Google Scholar 

  • Gaten, E., Shelton, R M. J. and Herring, P. J. (1992) Regional morphological variations in the compound eyes of certain mesopelagic shrimps in relation to their habitat. Journal of the Marine Biological Association of the UK, 72, 61–75.

    Article  Google Scholar 

  • Geeraets, W. J. and Berry, E. R. (1968) Ocular spectral characteristics as related to hazards from lasers and other light sources. American Journal of Ophthalmology, 66 (1), 15–20.

    PubMed  CAS  Google Scholar 

  • Gerster, H. (1991) Review: antioxidant protection of the ageing macula. Age and Ageing 20, 60–69.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, T. H., Collins, J. S. and Licht, S. (1984) The cone oil droplets of avain retinas. Vision Research, 24 (11), 1661–1671.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, E. B. and Williams, T. P. (1966) Calculated effects of `screening pigments’. Vision Research 6, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Gorgels, T. G. M. E and van Norren, D. (1992) Spectral transmittance of the rat lens. Vision Research,32(8), 1509–1512.

    Google Scholar 

  • Govardovskii, V. I. (1983) On the role of oil drops in colour vision. Vision Research 23(12), 1739–1740. Govardovskii, V. I. and Zueva, L. V. (1977) Visual pigments of chicken and pigeon. Vision Research, 17, 537–543.

    Google Scholar 

  • Govardovskii, V. I., Rohlich, R, Szel, A. and Zueva, L. V. (1992) Immunocytochemical reactivity of rod and cone visual pigments in the sturgeon retina. Visual Neuroscience,8(6), 531–537.

    Google Scholar 

  • Griswold, M. S. and Stark, W. S. (1992) Scotopic spectral sensitivity of phakic and aphakic observers extending into the near ultraviolet. Vision Research,32(9), 1739–1743.

    Google Scholar 

  • Grover, D. and Zigman, S. (1972) Colouration of human lenses by near ultraviolet photo–oxidized tryptophan. Experimental Eye Research, 13, 70–76.

    Google Scholar 

  • Haegerstrom–Portnoy, G. (1988) Short–wavelength–sensitive–cone sensitivity loss with aging: a protective role for macular pigment? Journal of the Optical Society of America A, 5 (12), 2140–2144.

    Article  CAS  Google Scholar 

  • Hailman, J. R. (1976) Oil droplets in the eyes of adult anuran amphibians: a comparative study. Journal of Morphology, 148, 453–468.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg, E. and Elofsson, R. (1989) Construction of the pigment shield of the crustacean compound eye: a review. Journal of Crustacean Biology, 9 (3), 359–372.

    Article  Google Scholar 

  • Ham, W. T., Mueller, H. A. and Sliney, D. H. (1976) Retinal sensitivity to damage from short wavelength light. Nature, 260, 153–155.

    Google Scholar 

  • Ham, W. T., Mueller, H. A., Ruffolo, J. J. and Clarke, A. M. (1979) Sensitivity of the retina to radiation damage as a function of wavelength. Photochemistry and Photobiology, 29, 735–743.

    Google Scholar 

  • Ham, W. T., Mueller, H. A., Ruffolo, J. J., Millen, J. E., Cleary, S. F., Guerry, R. K. and Guerry, D. (1984)

    Google Scholar 

  • Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Current Eye Research,3(1), 165–174.

    Google Scholar 

  • Ham, W. T., Ruffolo, J. J., Mueller, H. A., Clarke, A. M. and Moon, M. E. (1978) Histologic analysis of photochemical lesions produced in rhesus retina by short–wavelength light. Investigative Ophthalmology and Visual Science, 17 (10), 1029–1035.

    Google Scholar 

  • Hamdorf, K., Gogala, M. and Schwemer, J. (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: (ed. Langer, H.) Biochemistry and physiology of visual pigments. Springer, Berlin, Heidelberg, New York, pp. 156–166.

    Google Scholar 

  • Hammond, B. R. and Fuld, K. (1992) Interocular differences in macular pigment density. Investigative Ophthalmology and Visual Science, 33 (2), 350–355.

    PubMed  Google Scholar 

  • Hammond, B. R., Fuld, K. and Curran–Celentano, J. (1995) Macular pigment density in monozygotic twins. Investigative Ophthalmology and Visual Science,36(12), 2531–2541.

    Google Scholar 

  • Handelman, G. J. and Dratz, E. A. (1986) The role of antioxidants in the retina and retinal pigment epithelium and the nature of prooxidant–induced damage. Advances in Free Radical Biology and Medicine, 2, 1–89.

    Google Scholar 

  • Handelman, G. J., Dratz, E. A., Reay, C. C. and van Kuijk, F. J. G. M. (1988) Carotenoids in the human

    Google Scholar 

  • macula and whole retina. Investigative Ophthalmology and Visual Science,29(6), 850–855.

    Google Scholar 

  • Handelman, G. J., Snodderly, D. M., Adler, A. J., Russets, M. D. and Dratz, E. A. (1992) Measurement of carotenoids in human and monkey retinas. Methods in Enzymology, 213, 220–230.

    Google Scholar 

  • Handelman, G. J., Snodderly, D. M., Krinsky, N. I., Russett, M. D. and Adler, A. J. (1991) Biological control of primate macular pigment; biochemical and densitometric studies. Investigative Ophthalmology and Visual Science,32(2), 257–267.

    Google Scholar 

  • Hardie, R. C. (1986) The photoreceptor array of the dipteran retina. Trends in Neuroscience, 9 (9), 419–423.

    Article  Google Scholar 

  • Hata, M. and Hata, M. (1971) Carotenoid pigments in goldfish (Carassius auratus) I. Composition and distribution of carotenoids. International Journal of Biochemostry, 2, 11–19.

    Google Scholar 

  • Heath, A. R. and Hindman, H. M. (1988) The role of cyclic AMP in the control of elasmobranch ocular tapetum lucidum pigment granule migration. Vision Research, 28 (12), 1277–1285.

    Article  PubMed  CAS  Google Scholar 

  • Heinermann, P. H. (1984) Yellow intraocular filters in fishes. Experimental Biology, 43, 127–147.

    PubMed  CAS  Google Scholar 

  • Hemmingsen, E. A. and Douglas, E. L. (1970) Ultraviolet radiation thresholds for corneal injury in antarctic and temperate–zone animals. Comparative Biochemistry and Physiology, 32, 593–600.

    Google Scholar 

  • Herring, P. J. (1983) The spectral characteristics of luminous marine organisms. Proceedings of the Royal Society of London B, 220, 183–217.

    Article  Google Scholar 

  • Horridge, G. A. (1976) The ommatidium of the dorsal eye of Cloen as a specialization for photoreisomerisation. Proceedings of the Royal Society of London B, 193, 17–29.

    Google Scholar 

  • Horridge, G. A. and McLean, M. (1978) The dorsal eye of the mayfly Atalophlebia ( Ephemeroptera ). Proceedings of the Royal Society of London B., 200, 137–150.

    Google Scholar 

  • Hunold, W. and Malessa, P. (1974) Spectrophotometric determination of the melanin pigmentation of the human ocular fundus in vivo. Ophthalmic Research, 6, 355–362.

    Article  Google Scholar 

  • Hunt, D. M., Dulai, K. S., Bowmaker, J. K. and Mollon, J. D. (1995) The chemistry of John Dalton’s colour blindness. Science, 267, 984–988.

    Google Scholar 

  • Hyatt, G. W. (1975) Physiological and behavioural evidence for colour discrimination by fiddler crabs (Brachiura, Ocypodidae, genus Uca). In: Physiological ecology of estuarine organisms. (ed. Vernberg, F. J. ). pp. 333–365. University of South Carolina Press. Columbia SC.

    Google Scholar 

  • Ito, S., Thurston, E. L. and Nicol, J. A. C. (1975) Melanoid tapeta lucida in teleost fishes. Proceedings of the Royal Society of London B, 191, 369–385.

    Article  CAS  Google Scholar 

  • Jacobs, G. H. (1992) Ultraviolet vision in vertebrates. American Zoologist, 32, 544–554.

    Google Scholar 

  • Jacobs, G. H. and Yolton, R. L. (1972) Some characteristics of the eye and the electroretinogram of the prairie dog. Experimental Neurology, 37, 538–549.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, G. J. and Wood, I. S. (1988) Retinal phototoxicity from the operating microscope: a protective effect by the fovea. Archives of Ophthalmology, 106, 445–446.

    Article  PubMed  CAS  Google Scholar 

  • Jane, S. D. and Bowmaker, J. K. (1988) Tetrachromatic colour vision in the duck (Anas platyrhynchos L.): microspectrophotometry of visual pigments and oil droplets. Journal of Comparative Physiology A, 162, 225–235.

    CAS  Google Scholar 

  • Jerlov N. G. (1976) Marine Optics. Elsevier Scientific: Amsterdam, Oxford, New York, pp. 231. Johnston, D. and Hudson, R. A. (1976) Isolation and composition of varotenoid containing oil droplets from cone photoreceptors. Biochimistry and Biophysics Acta, 424, 235–245.

    Google Scholar 

  • Kennedy, D. and Milkman, R. D. (1956) Selective light absorption by the lenses of lower vertebrates, and its influence on spectral sensitivity. Biological Bulletin, 111, 375–386.

    Article  CAS  Google Scholar 

  • King–Smith, P E. (1969) Absorption spectra and function of the coloured oil drops in the pigeon retina. Vision Research,9, 1391–1399.

    Google Scholar 

  • Kirschfeld, K. (1982) Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proceedings of the Royal Society of London B, 216, 71–85.

    Google Scholar 

  • Kirschfeld, K and Wenk, P (1976) The dorsal compound eye of simuliid flies: An eye specialization for the detection of small, rapidly moving objects. Zeitschrift für Naturforschung,31c, 764–765.

    Google Scholar 

  • Kirschfeld, K., Feiler, R. and Franceschini, N. (1978) A photostable pigment within the rhabdomere of fly photoreceptors No. 7. Journal of Comparative Physiology A, 125, 275–284.

    Article  CAS  Google Scholar 

  • Kirschfeld, K., Hardie, R. C., Lenz, G. and Vogt, K (1988). Journal of Comparative Physiology A, 162, 421–433.

    Google Scholar 

  • Kolb, H. and Jones, J. (1982) Light and electron microscopy of the photoreceptors in the retina of the redeared slider Pseudemys scripta elegans. Journal of Comparative Neurology, 209, 331–338.

    Google Scholar 

  • Kondrashev, S. L. and Khodtsev, A. S. (1984) Light–dependent and humoral control of pigment transport in corneal chromatophores in marine fishes. Zoological Journal of Physiology, 88, 317–325.

    Google Scholar 

  • Kondrashev, S. L., Gamburtseva, A. G., Gnjubkina, V. P., Orlov, O. J. and My, P. T. (1986) Colouration of corneas in fish: A list of species. Vision Research, 26, 287–290.

    Google Scholar 

  • Kong, K–L., Fung. Y. M. and Wasserman, G. S. (1980) Filter–mediated colour vision with one visual pigment. Science, 207, 783–786.

    Google Scholar 

  • Krinsky, N. I. (1979) Carotenoid protection against oxidation. Pure and Applied Chemistry 51, 649–660.

    Article  CAS  Google Scholar 

  • Kunz, Y. W. and Regan, C. (1973) Histochemical investigations into the lipid nature of the oil–droplet in the retinal twin–cone of Lebistes reticulatus (Peters). Revue Suisse de Zoologie, 80, 699–703.

    Google Scholar 

  • Kunz, Y. W. and Wise, C. (1973) Ultrastructure of the `oil–droplet’ in the retinal twin–cone of Lebistes reticulatus (Peters). Revue Suisse de Zoologie, 80, 694–698.

    CAS  Google Scholar 

  • Labhart, T. and Nilsson, D.–E. (1995) The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. Journal of Comparative Physiology A, 176, 437–453.

    Google Scholar 

  • Labhart, T, Meyer, E. R and Shenker, L. (1992) Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell and Tissue Research, 268, 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Lall A. B. and Cronin T. W. (1987) Spectral sensitivity of the compound eyes in the purple land crab Gecarcinus lateralis ( Freminville ). Biological Bulletin, 173, 398–406

    Google Scholar 

  • Lall, A. B., Lord, E. T. and Trouth, C. O. (1982) Vision in the firefly Photuris lucicrescens (Coleoptera: Lampyridae): spectral sensitivity and selective adaptation in the compound eye. Journal of Comparative Physiology A, 147, 195–200.

    Article  Google Scholar 

  • Lall, A. B., Strother, G. K., Cronin, T. W. and Seliger, H. H. (1987) Modification of spectral sensitivities by screening pigments in the compound eyes of twilight–active fireflies (Coleoptera: Lampyridae). Journal of Comparative Physiology A, 162 (1), 23–34.

    Google Scholar 

  • Land, M. F. (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus. Journal of Experimental Biology, 45, 433–447

    Google Scholar 

  • Land, M. E. (1972) The physics and biology of animal reflectors. In: Progress in Biophysics and Molecular Biology. 24: pp. 75–106. (ed. Butler, J. A. V. and Noble, D. ), Pergamon Press. Oxford and New York.

    Google Scholar 

  • Land, M. F. (1981) Optics and vision in invertebrates. In: Handbook of sensory physiology. VII/6B. (ed. Antrum, H.), pp. 471–594. Springer–Verlag. Berlin, Heidelberg, New York.

    Google Scholar 

  • Land, M. F. (1985) The morphology and optics of spider eyes. In: Neurobiology of arachnids. (ed. Barth F. G.) Springer–Verlag, Berlin, Heidelberg. pp. 53–78.

    Google Scholar 

  • Land, M. E (1989) Variations in the structure and design of compound eyes. In: Facets of Vision. (eds Stavenga, D. G. and Hardie, R. C.), Springer–Verlag, Berlin, Heidelberg. pp 90–111.

    Google Scholar 

  • Land, M. F. (1993a) Old twist in a new tale. Nature, 363, 581–582.

    Google Scholar 

  • Land, M. F. (1993b) The visual control of courtship behaviour in the fly Poecilobothrus nobilitatus. Journal of Comparative Physiology A, 173, 595–603.

    Google Scholar 

  • Langer, H., Hamann, B. and Meinecke, C. C. (1979) Tetrachromatic visual system in the moth Spodoptera exempta (Insecta: Noctuidae). Journal of Comparative Physiology A, 129, 235–239.

    Google Scholar 

  • Laughlin, S. and McGuinness, S. (1978) The structures of dorsal and ventral regions of a dragonfly retina. Cell and Tissue Research, 188, 427–447.

    Google Scholar 

  • Laurens, H. and Detwiler, S. R. (1921) The structure of the retina of Alligator mississippiensis and its photomechanical changes. Journal of Experimental Zoology, 32, 207–234.

    Google Scholar 

  • Leggett. L. M. W. (1979) A retinal substrate for colour discrimination in crabs. Journal of Comparative Physiology A, 133, 159–166.

    Google Scholar 

  • Lerman, S. (1980) Radiation energy and the Eye. MacMillan, New York.

    Google Scholar 

  • Lerman, S. (1987) Chemical and physical properties of normal and aging lens: Spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses. American Journal of Optometry and Physiological Optics, 64, 11–22.

    Google Scholar 

  • Liebman, R A. and Granda, A. M. (1975) Super dense carotenoid spectra resolved in single cone oil droplets. Nature, 253, 370–372.

    Article  PubMed  CAS  Google Scholar 

  • Lipetz, L. E. (1984a) A new method for determining peak absorbance of dense pigment samples and its application to the cone oil droplets of Emydoidea blandingii. Vision Research, 24(6), 597–604.

    Google Scholar 

  • Lipetz, L. E. (1984b) Pigment types, densities and concentrations in cone oil droplets of Emydoidea blandingii. Vision Research, 24 (6), 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Locket, N. A. (1972) The reflecting structure in the iridescent cornea of the serranid teleost Nemanthias carberryi. Proceedings of the Royal Society B, 182, 249–254.

    Article  Google Scholar 

  • Locket, N. A. (1977) Adaptations to the deep–sea environment. In Handbook of Sensory Physiology 7(5) (ed E Crescitelli). Springer, Belin Heidelburg New York. pp. 67–192.

    Google Scholar 

  • Lunau, K. and Knüttel, H. (1995) Vision through coloured eyes. Naturwissenschaften 82: 432–434.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J. N. (1971) Iridescent corneas in fishes. Nature, 233, 205–207.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J. N. (1975) The structure and function of iridescent corneas in teleost fishes. Proceedings of the Royal Society B, 188, 437–457.

    Google Scholar 

  • Lythgoe, J. N. (1976) The ecology, function and phylogeny of iridescent multilayers in fish corneas. In Light as an ecological factor:: II (eds G. C. Evans, R. Bainbridge and O. Rackham) Blackwell scientific Publications, Oxford pp. 211–247.

    Google Scholar 

  • Lythgoe, J. N. (1979) The ecology of vision. Clarendon press. Oxford.

    Google Scholar 

  • Lythgoe, J. N. and Shand, J. (1989) The structural basis for iridescent colour changes in dermal and corneal iridophores in fish. Journal of Experimental Biology, 141, 313–325.

    Google Scholar 

  • MacNichol, E. F., Kunz, Y. W., Levine, J. S., Harosi, F. I. and Collins, B. A. (1978) Ellipsosomes: Organelles containing a cytochrome–like pigment in the retinal cones of certain fishes. Science, 200, 549–552.

    Article  PubMed  CAS  Google Scholar 

  • Maier, E. J. (1994) Ultraviolet vision in a passeriform bird: from receptor spectral sensitivity to overall spectral sensitivity in Leiothrix lutea. Vision Research,34(11), 1415–1418.

    Google Scholar 

  • Maier, E. J. and Bowmaker, J. K. (1993) Colour vision in the passeriform bird, Leiothrix lutea: correlation of visual pigment absorbance and oil droplet transmission with spectral sensitivity. Journal of Comparative Physiology A, 172, 295–301.

    Google Scholar 

  • Malinow, M. R., Feeney–Bums, L., Peterson, L. H., Klein, M. L. and Neuringer, M. (1980) Diet–related macular anomalies in monkeys. Investigative Ophthalmology and Visual Science,19(8), 857–863.

    Google Scholar 

  • Marshall, N. J. (1988) A unique colour and polarization vision system in mantis shrimps. Nature. 333, 557–560.

    Google Scholar 

  • Marshall, N. J. (1994) The `six–eyed’ stomatopod. Endeavour,18(1), 17–26.

    Google Scholar 

  • Marshall, N. J. and Land, M. F. (1994) Some optical features of the eyes of stomatopods I and II. Journal of Comparative Physiology A, 173, 565–594

    Google Scholar 

  • Marshall N. J., Land M. E, King C. A. and Cronin T. W. (1991a) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarised light. Philosophical Transactions of the Royal Society of London B, 334, 33–56

    Article  Google Scholar 

  • Marshall N. J., Land M. F., King C. A. and Cronin T. W. (1991b) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II Colour pigments in the eyes of stomatopod crustaceans: polychromatic vision by serial and lateral filtering. Philosophical Transactions of the Royal Society of London B, 334:57–84.

    Google Scholar 

  • Martin, G. R. and Muntz, R.A. (1978) Spectral sensitivity of the red and yellow oil droplet fields of the pigeon (Columba livia). Nature, 274, 620–621.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. and Muntz, W. R. A. (1979) Retinal oil droplets and vision in the pigeon (Columba livia), in Neural Mechanisms of Behaviour in the Pigeon (ed A. M. Grands and J. H. Maxwell), Plenum Press, New York, pp. 307–325.

    Google Scholar 

  • Matusi, S., Seidou, M., Horiuchi, S., Uchiyama, I. and Kito, Y. (1988) Adaptation of a deep–sea cephalopod to the photic environment. Journal of General Physiology, 92, 55–66.

    Article  Google Scholar 

  • McCandless, R. L., Hoffert, J. R. and Fromm, P. O. (1969) Light transmission by comeas, aqueous humor and crystalline lenses of fishes. Vision Research, 9, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Menzel, R. (1981) Spectral sensitivity and colour vision in invertebrates. In: Handbook of sensory physiology, vol VII/6A (ed Autrum, H. ) pp 503–580. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Menzel, R., Wunderer, H. and Stavenga, D. G. (1991) Functional morphology of the divided compound eye honeybee drone (Apis mellifera). Tissue Cell, 23, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Merker, E. (1934) Die Sichtbarkeit ultravioletten Lichtes. Biological Reviews 9(1), 49–78.

    Google Scholar 

  • Michinomae, M., Masuda, H., Seidou, M. and Kito, Y. (1994) Structural basis for wavelength discrimination in the banked retina of the firefly squid Watasenia scintillans. Journal of Experimental Biology, 193, 1–12.

    Google Scholar 

  • Miller, W. H. (1979) Ocular optical filtering, in Handbook of Sensory Physiology VII/6A (ed H. Antrum), Springer, Berlin, pp 69–143.

    Google Scholar 

  • Miller, W. H. and Bernard, G. D. (1968) Butterfly glow. Journal of ultrastructure Research, 24, 286–294.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. H., Moller, A. R. and Bernard, C. G. (1966) The comeal nipple array, in The functional organisation of the compound eye (ed C. G. Bernard) Pergamon, Oxford, pp. 21–33.

    Google Scholar 

  • Muntz, W. R. A. (1972) Inert absorbing and reflecting pigments, in Handbook of Sensory Physiology VII/1 (ed H. J. A. Dartnall ), Springer, Berlin, pp 529–565.

    Google Scholar 

  • Muntz, W. R. A. (1973) Yellow filters and the absorption of light by the visual pigments of some Amazonian fishes. Vision Research, 13, 2235–2254.

    Article  PubMed  CAS  Google Scholar 

  • Muntz, W. R. A. (1976a) The visual consequences of yellow filtering pigments. In Light as an ecological factor: II (eds G. C. Evans, R. Bainbridge and O.Rackham) Blackwell Scientific Publications, Oxford pp. 271–287.

    Google Scholar 

  • Muntz, W. R. A. (1976b) On yellow lenses in mesopelagic animals. Journal of the Marine Biological Association of the United Kingdom, 56, 963–976.

    Article  Google Scholar 

  • Muntz, W. R. A. (1982) Visual adaptations to different light environments in Amazonian fishes. Revue Canadienne de Biologogie Experimentale, 41 (1), 35–46.

    Google Scholar 

  • Muntz, W. R. A. (1990) Stimulus, environment and vision in fishes, In The Visual System of Fish (eds R. H. Douglas and M. B. A. Djamgoz), Chapman and Hall, London, pp. 491–511.

    Google Scholar 

  • Nag, T. C. (1995) Ultrastructure of ellipsosomes in the retina of Garra lamta. Journal of Electron Microscopy, 44, 405–407.

    Google Scholar 

  • Nag, T. C. and Bhattacharjee, J. (1995) Retinal ellipsosomes: morphology, development, identification, and comparison with oil droplets. Cell and Tissue Research, 279, 633–637.

    Article  PubMed  CAS  Google Scholar 

  • Neumeyer, C. and Jäger, J. (1985) Spectral sensitivity of the freshwater turtle Pseudemys scripta elegans: evidence for the filter–effect of coloured oil droplets. Vision Research, 25(6), 833–838.

    Google Scholar 

  • Nicol, J. A. C. (1981) Tapeta lucida of vertebrates. In Vertebrate Photoreceptor Optics (eds J. M. Enoch and F. L. Tobey ), Springer–Verlag, Berlin pp. 401–431.

    Google Scholar 

  • Nicol, J. A. C. (1989) The Eyes of Fishes. Oxford University Press, Oxford. pp. 308.

    Google Scholar 

  • Nicol, J. A. C. and Arnott, H. J. (1973) Tapeta lucida in bony fishes (Acinopterygii): a survey. Canadian Journal of Zoology, 51, 69–81.

    Article  Google Scholar 

  • Nicol, J. A. C. and Arnott, H. J. (1974) Tapeta lucida in the eyes of goatsuckers ( Caprimulgidae ). Proceedings of the Royal Society of London B., 187, 349–352.

    Google Scholar 

  • Nicol, J. A. C., Zyznar, E. S., Thurston, E. L. and Wang, R. T. (1975) The tapetum lucidum in the eyes of cusk–eels (Ophidiidae). Canadian Journal of Zoology, 53, 1063–1079.

    Google Scholar 

  • Nie, S., Castillo, C. G., Bergbauer, K. L., Kuck, J. F. R., Nabiev, I. R. and Yu, N.–T. (1990) Surface enhanced Raman spectra of eye lens pigments. Applied Spectroscopy, 44(4), 571–575.

    Google Scholar 

  • Nilsson, D.–E. (1990) From cornea to retinal image in invertebrate eyes. Trends in Neuroscience, 13(2), 55 64.

    Google Scholar 

  • Nussbaum J. J., Pruett, R. C. and Delori, F. C. (1981) Historic perspectives–Macular yellow pigment–the fist 200 years. Retina, 1, 296–310

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka, T. (1985) Relation of spectral types to oil droplets in cones of turtle retina. Science, 229, 874–877.

    Article  PubMed  CAS  Google Scholar 

  • Organisciak, D. T. and Winkler, B. S. (1994) Retinal light damage: practical and theoretical considerations, in Progress in Retinal and Eye Research, volume 13(1) (eds. N. N. Osborne and G. J. Chader), Pergamon Press, Oxford, pp. 1–29.

    Google Scholar 

  • Orlov, O. Yu. and Gamburtseva A. G. (1976a) Changeable colouration of cornea in the fish Hexagrammos octogrammus. Nature, 263: 405–427.

    Article  PubMed  CAS  Google Scholar 

  • Orlov, O. Yu. and Gamburtseva, A. G. (1976b) Dynamics of the colour of the cornea of the Atka fish. Biofizika, 21 (2), 362–365.

    PubMed  Google Scholar 

  • Packard, A. (1972) Cephalopods and fish: the limits of convergence. Biol. Rev, 47:241–307.

    Google Scholar 

  • Partridge, J. C. (1989) The visual ecology of avian cone oil droplets. Journal of Comparative Physiology A, 165, 415–426.

    Article  Google Scholar 

  • Partridge, J. C., Archer, S. N. and Lythgoe J. N. (1988) Visual pigments in the individual rods of deep–sea fishes. Journal of Comparative Physiology A, 162, 543–550.

    Article  CAS  Google Scholar 

  • Partridge, J. C., Shand, J., Archer, S. N., Lythgoe, J. N. and van Groningen–Luyben, W. A. H. M. (1989) Interspecific variation in the visual pigments of deep–sea fishes. Journal of Comparative Physiology A, 164, 513–529.

    CAS  Google Scholar 

  • Pease, P. L., Adams, A. J. and Nuccio, E. (1987) Optical density of human macular pigment. Vision Research, 27(5), 705–710.

    Google Scholar 

  • Pedler, C. M. H. and Boyle, M. (1969) Multiple oil droplets in the photoreceptors of the pigeon. Vision Research, 9, 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Reading, V. M. and Weale, R. A. (1974) Macular pigment and chromatic aberration. Journal of the Optical Society of America, 64 (2), 231–234.

    Google Scholar 

  • Remy, M and Etrunerton, J. (1989) Behavioural spectral sensitivities of different retinal areas in pigeons. Behavioural Neuroscience, 103 (1), 170–177.

    Article  CAS  Google Scholar 

  • Ribi, W. A. (1978) A unique hymenopteran compound eye. The retina fine structure of the digger wasp Sphex cognatus Smith (Hymenoptera, Sphecidae). Zoologisches Jahrbuch der Anatomie, 100, 299–342.

    Google Scholar 

  • Ribi, W. A. (1979) Coloured screening pigments cause red eye glow in Pierid butterflies. Journal of Comparative Physiology A, 132, 1–9.

    Google Scholar 

  • Robinson, S. R. (1994) Early vertebrate colour vision. Nature, 367, 121.

    Article  Google Scholar 

  • Rossel, S. and Weimer, R. (1984) How bees analyse the polarisation patterns in the sky. Experiments and model. Journal of Comparative Physiology A, 154, 607–615.

    Google Scholar 

  • Ruddock, K. H. (1972) Light transmission through the ocular media and macular pigment and its significance for psychophysical investigation, in Handbook of Sensory Physiology VII/4 (ed ? ), Springer, Berlin, pp 455–469.

    Google Scholar 

  • Said, F. S. and Weale, R. A. (1959) The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia, 3, 213–231.

    Article  PubMed  CAS  Google Scholar 

  • Sama, T. (1992) Properties and function of the ocular melanin–a photobiophysical view. Journal of Photochemistry and Photobiology. B: Biology, 12, 215–258

    Google Scholar 

  • Schalch, W. (1992) Carotenoids in the retina–a review of their possible role in preventing or limiting damage caused by light and oxygen, in Free Radicals and Aging (eds I. Emerit and B. Chance ), Birkhäuser Verlag, Basel, pp. 280–298.

    Chapter  Google Scholar 

  • Schiedt, K., Bischof, S. and Glinz, E. (1991) Recent progress on carotenoid metabolism in animals. Pure and Applied Chemistry, 63(1), 89–100.

    Google Scholar 

  • Schlecht, P., Hamdorf, and Langer, H. (1978) The arrangement of colour receptors in a fused rhabdom of an insect. A microspectrophotometric study on the moth Dielephila. Journal of Comparative Physiology A, 123, 239–243.

    Google Scholar 

  • Schneeweis, D. M. and Green, D. G. (1995) Spectral properties of turtle cones. Visual Neuroscience, 12, 333–344.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, L. and Langer, H. (1975) Electron microscopic investigations on the structure of the photoreceptor cells in the compound eye of Ascalaphus macaronius (Insecta: Neuroptera). In: Photoreceptor optics (eds. Snyder, A. W. and Menzel, R) Springer, New York, Heidelberg, Berlin, pp. 410–412.

    Chapter  Google Scholar 

  • Sen, A. C., Ueno, N. and Chakrabarti, B. (1992) Studies on human lens: I. Origin and development of fluorescent pigments. Photochemistry and Photobiology,55(5), 753–764.

    Google Scholar 

  • Shand, J. (1988) Corneal iridescence in fishes: light–induced colour changes in relation to structure. Journal of Fish Biology, 32, 625–632.

    Article  Google Scholar 

  • Shand, J. and Lythgoe, J. N. (1987) Light–induced changes in corneal iridescence in fish. Vision Research 27 (2), 303–305.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, P. M. J., Gaten, E. and Herring, P. J. (1992) Adaptations of tapeta in the eyes of mesopelagic decapod shrimps to match the oceanic irradiance distribution. Journal of the Marine Biological Association of the UK, 72, 77–88

    Google Scholar 

  • Sivak, J. G. and Bobier, W. R. (1978) Chromatic aberration of the fish eye and its effect on refractive state. Vision Research, 18 (4), 453–455.

    Article  CAS  Google Scholar 

  • Sivak, J. G. and Roth, P. I. (1978) Possible role of fundus circulation as an intraocular colour filter in certain fishes. Reviews in Canadian Biology, 37 (2), 85–90.

    CAS  Google Scholar 

  • Snodderly, D. M. (1995) Evidence for protection against age–related macular degeneration by carotenoids and antioxidant vitamins. American Journal of Clinical Nutrition, 62(suppl), 1448S –14615.

    Google Scholar 

  • Snodderly, D. M., Auran, J. D. and Delori, F C. (1984b) The macular pigment. I. Spatial distribution in primate retinas. Investigative Ophthalmology and Visual Science, 25(6), 674–685.

    Google Scholar 

  • Snodderly, D. M., Handelman, G. J. and Adler, A. J. (1991) Distribution of individual macular pigment carotenoids in central retina of macaque and squirrel monkeys. Investigative Ophthalmology and Visual Science, 32 (2), 268–279.

    PubMed  CAS  Google Scholar 

  • Snodderly, D. M., Brown, P. K., Delori, F. C. and Auran, J. D. (1984a) The macular pigment. I. Absorbance spectra, localisation, and discrimination from other yellow pigments in primate retinas. Investigative Ophthalmology and Visual Science, 25 (6), 660–673.

    PubMed  CAS  Google Scholar 

  • Snyder, A. W. (1975) Optical properties of invertebrate photoreceptors.ln: The Compound Eye and Vision of Insects. (ed. Horridge, G. A.). pp. 179–235. Clarendon. Oxford.

    Google Scholar 

  • Snyder, A. W. and Horridge, G. A. (1972) The optical function of changes in the medium surrounding the cockroach rhabdom. Journal of Comparative Physiology A, 81, 1–8.

    Google Scholar 

  • Snyder, A. W., Menzel, R. and Laughlin, S. B. (1973) Structure and function of the fuzed rhabdom. Journal of Comparative Physiology A, 87, 99–135.

    Google Scholar 

  • Somiya, H. (1976) Functional significance of the yellow lens in the eyes of Argyropelecus affin. Marine Biology, 34, 93–99.

    Article  Google Scholar 

  • Somiya, H. (1980) Fishes with eye shine: functional morphology of guanine type tapetum lucidum. Marine Ecology Progress Series, 2, 9–26.

    Article  CAS  Google Scholar 

  • Somiya, H. (1982) `Yellow lens’ eyes of a stomatoid deep–sea fish, Malacosteus niger. Proceedings of the Royal Society B, 215, 481–489.

    Google Scholar 

  • Stark, W. S. (1987) Photopic sensitivities to ultraviolet and visible wavelengths and the effects of the macular pigments in human aphakic observers. Current Eye Research,6(4), 631–638.

    Google Scholar 

  • Stavenga, D. G. (1979) Pseudopupils in compound eyes. In: Handbook of Sensory Physiology. vol. VII 6A. (ed. Autrum, H. ). pp. 5–24. Springer. Berlin, Heidelberg, New York.

    Google Scholar 

  • Stavenga, D. (1996) Insect retinal pigments: spectral characteristics and physiological functions. (in press).

    Google Scholar 

  • Stowe, S. (1980) Spectral sensitivity and retinal pigment movement in the crab Leptograpsus variegatus (Fabricus). Journal of Experimental Biology, 87, 73–98.

    PubMed  CAS  Google Scholar 

  • Thorpe, A. (1991) Spectral trtansmission and short–wave absorbing pigments in the lenses of fish and other animals. Ph.D. thesis, City University, London.

    Google Scholar 

  • Thorpe, A. and Douglas, R.H. (1993) Spectral transmission and short–wave absorbing pigments in the fish lens. Il. Effects of age. Vision Research, 33, 301–307.

    Google Scholar 

  • Thorpe, A., Truscott, R. J. W. and Douglas, R. H. (1992) Kynurenine identified as the short–wave absorbing lens pigment in the deep–sea fish, Stylephorus chordatus. Experimental Eye Research, 55, 53–57.

    Article  CAS  Google Scholar 

  • Thorpe, A., Douglas, R. H., and Truscott, R. J. W. (1993) Spectral transmission and short–wave absorbing pigments in the fish lens–I. Phylogenetic distribution and identity. Vision Research, 33, 289–300.

    Article  PubMed  CAS  Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Zeitschrift der Naturforschung, 48c, 96–104.

    Google Scholar 

  • Trujillo–Cenoz, O. and Bernard, G. D. (1972) Some aspects of the retinal organisation of Sympyncus lineatus (Diptera, Dolichopodidae). Journal of Ultrastructure Research, 38, 149–160.

    Google Scholar 

  • Truscott, R. J. W., Carver, J. A., Thorpe, A. and Douglas, R. H. (1992) The identification of 3–hydroxykynurenine as the lens pigment in the gourami, Trichogaster trichopterus. Experimental Eye Research, 54, 1015–1017.

    Google Scholar 

  • Tso, M. O. M. (1989) Experiments on visual cells by nature and man: in search of treatment for photoreceptor degeneration. Investigative Ophthalmology and Visual Science, 30 (12), 2430–2460.

    PubMed  CAS  Google Scholar 

  • Tsuji, F. I. (1985) ATP–dependent bioluminescence in the firefly squid, Watasenia scintillans. Proceedings of the National Academy of Science U.S.A, 82, 4629–4632.

    Article  CAS  Google Scholar 

  • van Best, J. A., Bollemeijer, J. G. and Sterk, C. C. (1988) Corneal transmission in whole human eyes. Experimental Eye Research,46(5), 765–768.

    Google Scholar 

  • van den Berg, T. J. T. P. and Ijspeert, J. K. (1995) Light scattering in donor lenses. Vision Research,35(1), 169–177.

    Google Scholar 

  • van den Berg, T. J. T. P. and Spekreijse, H. (1997) Near infrared light absorption in the human eye media. Vision Research, 37 (2), 249–253.

    Article  PubMed  Google Scholar 

  • van den Berg, T. J. T. P. and Tan, K. E. W. (1994) Light transmittance of the human cornea from 320 to 700 nm for different ages. Vision Research,34(11), 1453–1456.

    Google Scholar 

  • van Heyningen, R. (1971a) Fluorescent Glucoside in the human lens. Nature, 230, 393–394.

    Article  PubMed  Google Scholar 

  • van Heyningen, R. (1971b) Fluorescent derivatives of 3–Hydroxy–L–kynurenine in the lens of man, the baboon and the Grey Squirrel. Proceedings of the Biochemical Society, 123, 30 P.

    Google Scholar 

  • van Heyningen, R. (1973a) Assay of fluorescent glucosides in the human lens. Experimental Eye Research, 15, 121–126.

    Article  PubMed  Google Scholar 

  • van Heyningen, R. (1973b) The glucoside of 3–hydroxykynurenine and other fluorescent compounds in the human lens. In The human lens in relation to cataract. Ciba Foundation symposium 19. Elsevier, Amsterdam. pp. 151–171.

    Google Scholar 

  • van Heyningen, R. and Linklater, J. (1976) Serine and threonine ethanolamine phosphate diesters, and some other unusual compounds in the lens of the cod fish (Gadus morhua) and haddock (Gadus aeglefinus). Experimental Eye Research, 23, 29–34

    Article  PubMed  Google Scholar 

  • van Norren, D. and Schellekens, P. (1990) Blue light hazard in rat. Vision Research,30(10), 1517–1520. van Norren, D. (1991) Photochemical damage to the eye. News in Physiological Sciences,6, 232–234. Vassière, R. (1961) Morphologie et histologie comparées des yeux des crustacés copépodes. Archives

    Google Scholar 

  • Zoologie Experimentale Génerale,100, 1–125.

    Google Scholar 

  • Vogt, K., Kirschfeld, K. and Stavenga, D. G. (1982) Spectral effects of the pupil in fly photoreceptors. Journal of Comparative Physiology A, 146, 145–152.

    Google Scholar 

  • Vos, J. J. (1972) Literature review of human macular absorption in the visible and its consequences for the cone receptor primaries. Institute for Perception, RVO–TNO, IZF 1972–17, Soesterberg, The Netherlands. (from Bone et al. 1992 ).

    Google Scholar 

  • Vos, J. J., Coemans, M. A. J. M. and Nuboer, J. F. W. (1994) The photopic sensitivity of the yellow field of the pigeon’s retina to ultraviolet light. Vision Research,34(11), 1419–1425.

    Google Scholar 

  • Wagner H.–J., Kirsch, M. and Douglas, R. H. (1992) Light dependent and endogenous circadian control of adaptation in teleost retinae. In `Rhythms in fishes’ (ed M. A. Ali ). Plenum Press: New York. pp. 255–291.

    Chapter  Google Scholar 

  • Wallman, J. (1979) Role of the retinal oil droplets in the colour vision of Japanese quail, in Neural Mechanisms of Behaviour in the Pigeon (ed A. M. Granda and J. H. Maxwell), Plenum Press, New York, pp. 327–351.

    Google Scholar 

  • Walls, G. L. and Judd, H. D. (1933a) The intraocular colour filters of vertebrates. British Journal of Ophthalmology, 17, 641–675.

    Google Scholar 

  • Walls, G. L. and Judd, H. D. (1933b) The intraocular colour filters of vertebrates. British Journal of Ophthalmology, 17, 705–725.

    Google Scholar 

  • Walls, G. L. (1963) The Vertebrate Eye and its Adaptive Radiation. Hafner Publishing Co., New York. Wang, R. T. and Nicol, J. A. C. (1974) The tapetum lucidum of gars (Lepisosteidae) and its role as a reflector. Canadian Journal of Zoology, 52,1523–1530.

    Google Scholar 

  • Wang, R. T., Nicol, J. A. C. and Arnott H. J. (1981) Diffuse reflectance of retinal tapeta lucida, with special reference to drums (Sciaenidae). Canadian Journal of Zoology, 59, 271–284.

    Google Scholar 

  • Wang, R. T., Nicol, J. A. C., Thurston, E. L. and McCants, M. (1980) Studies on the eyes of big eyes (Teleostei Priacanthidae) with special reference to the tapetum lucidum. Proceedings of the Royal Society of London B, 210, 499–512.

    Article  Google Scholar 

  • Warrant, E. J. and McIntyre, P. D. (1996) The visual ecology of pupillary action in superposition eyes. Journal of Comparative Physiology A, 178, 75–90.

    Article  Google Scholar 

  • Waterman, T. H. (1981) Polarization sensitivity. In: Handbook of sensory physiology. VIIJ6C (ed. Autrum, H.) pp. 281–469. Springer Verlag. Berlin, Heidelberg, New York.

    Google Scholar 

  • Weale, R. A. (1953) The spectral reflectivity of the cats tapetum measured in situ. Journal of Physiology, 119, 30–42.

    PubMed  CAS  Google Scholar 

  • Weale, R. A. (1988) Age and the transmittance of the hman crystalline lens. Journal of Physiology, 395, 577–587.

    Google Scholar 

  • Weale, R. A. (1995) Is the crystalline lens a calender or a photometer? Points de Vue, 33, 8–13.

    Google Scholar 

  • Wehner, R. (1981) Spatial vision in arthropods. In: Handbook of sensory physiology. VII/6C (ed. Autrum, H.). Springer, Berlin, Heidelberg, New York. pp. 287–645.

    Google Scholar 

  • Weiter, J. J., Delori, F. and Dorey, C. K. (1988) Central sparing in annular macular degeneration. American Journal of Ophthalmology, 106, 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Wen, G. Y., Sturman, J. A. and Shek, J. W. (1985) A comparative study of the tapetum, retina, and skull of the ferret, dog and cat. Laboratory Animal Science, 35 (3), 200–210.

    PubMed  CAS  Google Scholar 

  • Werner, J S. (1982) Development of scotopic sensitivity and the absorption spectrum of the human ocular media. Journal of the Optical Society of America,72(2), 247–258.

    Google Scholar 

  • Werner, J. S., Donnelly, S. K. and Kliegl, R. (1987) Aging and human macular pigment density–appended with translations from the work of Max Schultze and Ewald Hering. Vision Research,27(2), 257–268.

    Google Scholar 

  • Widder, E. A., Latz, M. I. and Case, J. F. (1983) Marine Bioluminescence spectra measured with an optical multichannel detection system. Biological Bulletin, 165, 791–810.

    Google Scholar 

  • Widder, E. A., Latz, M. I., Herring, P. J., and Case, J. F. (1984) Far red bioluminescence from two deep–sea fishes. Science, 225, 512–514.

    Article  PubMed  CAS  Google Scholar 

  • Wild, J. M. and Hudson, C. (1995) The attenuation of blue–on–yellow perimetry by the macular pigment. Ophthalmology,102(6), 911–917.

    Google Scholar 

  • Wolbarsht, M. L. (1976)The function of intraocular colour filters. Federation Proceedings, 35(1), 44–50.

    Google Scholar 

  • Wood, A. M. and Truscott, R. J. W. (1993) UV filters in human lenses: Tryptophan catabolism Experimental Eye Research, 56, 317–325.

    Google Scholar 

  • Wood, A. M. and Truscott, R. J. W. (1994) Ultraviolet filter compounds in human lenses: 3–hydroxykynurenine glucoside formation. Vision Research,34(11), 1369–1374.

    Google Scholar 

  • Wooten, B. R. and Geri, G. A. (1987) Psychophysical determination of intraocular light scatter as a function of wavelength. Vision Research, 8, 1291–1298.

    Article  Google Scholar 

  • Wortel, J. F. and Nuboer, J. F. W. (1986) The spectral sensitivity of blue sensitive pigeon cones: evidence for complete screening of the visual pigment by oil droplets. Vision Research, 26 (6), 885–886.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, S. and Tateda, H. (1976) Spectral sensitivities of jumping spider eyes. Journal of Comparative Physiology A, 105, 29–41.

    Article  Google Scholar 

  • Yang, En–C. and Osorio, D. (1996) Spectral responses and chromatic processing in the dragonfly lamina. Journal of Comparative Physiology A, 178, 543–550.

    Google Scholar 

  • Yeum, K.–Y., Taylor, A., Tang, G. and Russell, R. M. (1995) Measurement of carotenoids, retinoids and topopherols in human lens. Investigative Ophthalmology and Visual Science, 36 (13), 2756–2761.

    PubMed  CAS  Google Scholar 

  • Yolton, R. L., Yolton, D. P., Renz, J. and Jacobs, G. H. (1974) Preretinal absorbance in Sciurid eyes. Journal of Mammalogy, 55 (1), 14–20.

    Article  PubMed  CAS  Google Scholar 

  • Young, H. M. and Pettigrew, J. D. (1991) Cone photoreceptors lacking oil droplets in the retina of the echidna, Tachyglossus aculeatus (Monotremata). Visual Neuroscience, 6, 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Young, S. R. and Martin, G. R. (1984) Optics of retinal oil droplets: a model of light collection and polarization detection in the avian retina. Vision Research,24(2), 129–137.

    Google Scholar 

  • Yu, N.–T., Barron, B. C. and Kuck, J. F. R. (1989) Distribution of two metabolically related fluorophors in human lens measured by laser microprobe. Experimental Eye Research, 49, 189–194.

    Google Scholar 

  • Yu, N.–T., Cai, M.–Z., Ho, D. J.–Y. and Kuck, J. E R. (1988) Automated laser–scanning–microbeam fluorescence/Raman image analysis of human lens with multichannel detection: Evidence for metabolic production of a green fluorophor. Proceedings of the National Academy of Sciences USA, 85, 103–106.

    Google Scholar 

  • Zeil, J. (1983) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). Journal of Comparative Physiology A, 150, 379–393.

    Google Scholar 

  • Zhu, H. and Kirschfeld, K. (1984) Protection against photodestruction in fly photoreceptors by carotenoid pigments. Journal of Comparative Physiology A, 154, 153–156.

    Google Scholar 

  • Zigman, S. (1983) The role of sunlight in human cataract formation. Survey of Ophthalmology,27(5), 317–326.

    Google Scholar 

  • Zigman, S. (1985) Photobiology of the lens. In The ocular lens: Structure, function and pathology (Ed Maisel H.). Dekker Inc., New York. pp 301–347.

    Google Scholar 

  • Zigman, S. (1991) Comparative biochemistry and biophysics of elasmobranch lenses. The Journal of Experimental Zoology, Supplement 5, 29–40.

    Google Scholar 

  • Zigman, S. and Bagley, S. J. (1971) Near ultraviolet light effects on dogfish retinal rods. Experimental Eye Research, 12, 155–157.

    Google Scholar 

  • Zigman, S. and Phaxia, T. (1988) The nature and properties of squirrel lens yellow pigment. Experimental Eye Research, 47, 819–824.

    Article  PubMed  CAS  Google Scholar 

  • Zigman, S., Paxhia, T. and Waldron, W. (1985a) Properties and functions of near–UV absorbing pigments in marine animal lenses. Biological Bulletin, 169, 564.

    Article  Google Scholar 

  • Zigman, S., Paxhia, T. and Waldron, W. (1985b) Biochemical features of the grey squirrel lens. Investigative Ophthalmology and Visual Science, 26, 1075–1082.

    Google Scholar 

  • Zyznar, E. S. and Nicol, J. A. C. (1971) Ocular reflecting pigments of some malacostraca Journal of Experimental Marine Biology and Ecology, 6, 235–248.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douglas, R.H., Marshall, N.J. (1999). A review of vertebrate and invertebrate ocular filters. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics