Skip to main content

Compound eye structure: Matching eye to environment

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

In what ways is an animal’s lifestyle reflected in the design of its eyes? A superficial look at the eyes of any vertebrate group — fish, birds or mammals — reveals very little, except perhaps some relative differences in overall eye size. It is not until the retina is examined in detail that ecologically related differences start to appear, particularly in the distribution of ganglion cells (Collin, this volume). With compound eyes the situation is quite different, and it is often possible to learn much about the life of an insect or crustacean from the gross anatomy of the eyes, as well as their microscopic structure. This chapter explores why this is so, and offers a guide to the interpretation of the variation one finds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumgärtner, H. (1928) Der Formensinn und die Sehschärfe der Bienen. Z. Vergl Physiol. 7, 56–143.

    Google Scholar 

  • Brady, J. (1991) Flying mate detection and chasing by tsetse flies (Glossina). Physiol. Entomol. 16, 153–161.

    Google Scholar 

  • Collett, T. S., Land, M.F. (1975) Visual control of flight behaviour in the hoverfly Syritta pipiens L. J. Comp. Physiol. 99, 1–66.

    Google Scholar 

  • Dahmen, H. (1991) Eye specialisation in waterstriders: an adaptation to life in a flat world. J. Comp. Physiol. A., 169, 623–632.

    Article  Google Scholar 

  • Dietrich, W. (1909) Die Facettenaugen der Dipteren. Z. Wiss. Zool, 92, 465–539.

    Google Scholar 

  • Disney, R. H. L., Schroth, M. (1989) Observations on Megaselia persecutrix Schmitz (Diptera: Phoridae) and the significance of ommatidial size-differentiation. Entomologist’s Monthly Magazine, 125, 196–174.

    Google Scholar 

  • Exner, S. (1891) Die Facettenaugen der Dipteren von Krebsen und Insecten. Leipzig: Deuticke.

    Google Scholar 

  • Hardie, R. C., Franceschini, N., Ribi, W., Kirschfeld, K. (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. A., 145, 139–152.

    Google Scholar 

  • Horridge, G. A. (1978) The separation of visual axes in apposition compound eyes. Phil. Trans. Roy. Soc. Lond B, 285, 1–59.

    Article  CAS  Google Scholar 

  • Horridge, G. A., McLean, M. (1978) The dorsal eye of Atalophlebia (Ephemeroptera). Pmc. Roy. Soc. Lond. B, 200, 137–150.

    Article  Google Scholar 

  • Hughes, A. (1977) The topography of vision in mammals of contrasting lifestyle: comparative optics and organization. In: Crescitelli, R. (ed.) Handbook of Sensory Physiology vol. VIV5, pp. 613–756. Berlin: Springer.

    Google Scholar 

  • Jervis, M. A. (1992) A taxonomic revision of the pipunculid fly genus Chalarus Walker, with particular reference to the European fauna. Zoo. J. Linnean Soc, 105, 243–252.

    Article  Google Scholar 

  • Kirschfeld K (1976) The resolution of lens and compound eyes. In: Zettler F, Weiler R (eds) Neural Principles in Vision pp 354–370. Berlin: Springer.

    Chapter  Google Scholar 

  • Kirschfeld K (1979) The visual system of the fly: physiological optics and functional anatomy as related to behaviour. In: Schmitt, F. O., Worden, F. G. (eds) The Neurosciences 4th Study Program. pp 297310. Cambridge Mass: MIT Press.

    Google Scholar 

  • Labhart, T. and Nilsson, D.-E. (1995) The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the sky.1. Comp. Physiol. A. 176, 437–453.

    Google Scholar 

  • Land, M. F. (1980) Eye movements and the mechanism of vertical steering in euphausiid crustcea. J, Comp, Physiol, 137, 255–265.

    Article  Google Scholar 

  • Land, M. F. (1981a) Optics and vision in invertebrates. In: Autrum, H. (ed.) Handbook of Sensory Physiology. vol. VIJJ6B, pp 472–592. Berlin: Springer.

    Google Scholar 

  • Land, M. F. (1981b) Optics of the eyes of Phronima and other deep-sea amphipods. J. Comp. Physiol, 145, 209–226.

    Article  Google Scholar 

  • Land, M. F. (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J. Comp. Physiol, 154, 515–533.

    Article  Google Scholar 

  • Land, M. E (1989a) Variations in the structure and design of compound eyes. In: Stavenga, D. G., Hardie, R. (eds) Facets of Vision pp. 90–111. Berlin: Springer.

    Chapter  Google Scholar 

  • Land, M. F. (1989b) The eyes of hyperiid amphipods: relations of optical structure to depth. J. Comp. Physiol. A., 164, 751–762.

    Article  Google Scholar 

  • Land, M. E. and Eckert, H. (1985) Maps of the acute zones of fly eyes. J. Comp. Physiol. A, 156, 525–538.

    Article  Google Scholar 

  • Land, M. and Layne, J. (1995) The visual control of behaviour in fiddler crabs. I. Resolution, thresholds and the role of the horizon. J. Comp. Physiol. A, 177, 81–90.

    Google Scholar 

  • Land, M. F. Nilsson, D.-E. (1990) Observations on the compound eyes of the deep-sea ostracod Macrocypridina castanea. J. Exp. Biol, 148, 221–233.

    Google Scholar 

  • Land, M. E, Burton, F. A. Meyer-Rochow, V. B. (1979) The optical geometry of euphausiid eyes. J. Comp Physiol 130: 49–62.

    Article  Google Scholar 

  • Land, M. F., Marshall, N. B. Diebel, C. (1995) Tracking of blue lights by hyperiid amphipods. J. Mar. Biol. Assn. UK, 75, 71–81

    Article  Google Scholar 

  • Mallock, A. (1894) Insect sight and the defining power of compound eyes. Proc. R. Soc. London B, 55, 85–90

    Article  Google Scholar 

  • Nilsson, D.-E. (1988) A new type of imaging optics in compound eyes. Nature (Lund.), 332, 76–78.

    Google Scholar 

  • Nilsson, D.-E. (1989) Optics and evolution of the compound eye. In: Facets of Vision (eds Stavenga, D. G. and Hardie, R. C. ) pp. 30–73. Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Nilsson, D.-E. (1994) Eyes as optical alarm signals in fan worms and ark clams. Phil. Trans. R. Soc. Lond. B 346, 195–212.

    Article  Google Scholar 

  • Nilsson, D.-E. and Modlin, R. F. (1994) A mysid shrimp carrying a pair of binoculars. J. Exp. Biol, 189, 213–236.

    PubMed  Google Scholar 

  • Nilsson, D.-E. and Ro, A.-I. (1994) Did neural pooling for night vision lead to the evolution of neural superposition eyes? J. Comp. Physiol. A. 175, 289–302.

    Article  Google Scholar 

  • Odselius, R. Nilsson, D.-E. (1983) Regionally different ommatidial structure in the compound eye of the water flea Polyphemus (Cladocera, Crustacea). Proc. R. Soc. Lond. B, 217, 177–189.

    Google Scholar 

  • Rossel, S. (1979) Regional differences in photoreceptor performance in the eye of the praying mantis. J. Comp. Physiol, 131, 95–112.

    Article  Google Scholar 

  • Rossel, S. (1980) Foveal fixation and tracking in the praying mantis. J. Comp. Physiol 139, 307–331. Rossel, S. (1983) Binocular stereopsis in an insect. Nature (Lund.),302, 821–822.

    Google Scholar 

  • Schneider, L., Gogala, M., Draslar, K., Langer, H. and Schlecht, P. (1978) Feinstruktur und Schirmpigment-Eigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta, Neuroptera). Cytobiologie, 16, 274–307.

    Google Scholar 

  • Schwind, R. (1980) Geometrical optics of the Notonecta eye: adaptations to optical environment and way of life. J. Comp. Physiol, 140, 59–68.

    Article  Google Scholar 

  • Seidl, R. (1980) Die Sehfelder und Ommatidien-Divergenzwinkel der drei Kasten der Honigbiene (Apis mellifica). Verh. Dtsch. Zool. Ges. 1980, 367. Stuttgart: Gustav Fischer.

    Google Scholar 

  • Sherk, T. E. (1978) Development of the compound eyes of dragonflies. III. Adult compound eyes. J. Exp. Zool 203, 61–80.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, A. W. (1979) Physics of vision in compound eyes. In: Autrum H (ed.) Handbook of Sensory Physiology VIV6A. Springer, Berlin-Heidelberg-New York, pp. 225–313.

    Google Scholar 

  • Stavenga, D. G. (1979) Pseudopupils of compound eyes. In: Autrum, H. (ed.) Handbook of Sensory Physiology VIV6A. Springer, Berlin-Heidelberg-New York, pp 357–439.

    Google Scholar 

  • Strausfeld, N. J. (1991) Structural organization of male-specific visual neurons in calliphorid optic lobe. J. Comp. Physiol. A, 169, 379–393.

    Article  PubMed  CAS  Google Scholar 

  • Vallet, A. M. and Coles, J. A. (1991) A method of estimating the minimum visual stimulus that evokes a behavioural response in the drone, Apis mellifera male. Vision Res, 31, 1453–1455.

    Article  CAS  Google Scholar 

  • van Hateren, J. H., Hardie, R. C., Rudolph, A., Laughlin, S. B., Stavenga, D. G. (1989) The bright zone, a specialised dorsal eye region in the male blowfly Chrysomyia megalocephala. J. Comp. Physiol. A, 164, 297–308.

    Google Scholar 

  • Praagh, J. P., Ribi, W., Wehrhahn, C. and Wittmann, D. (1980) Drone bees fixate the queen with the dorsal frontal part of their compound eyes. J. Comp. Physiol, 136, 263–266.

    Article  Google Scholar 

  • Vogt, K. (1980) Die Spiegeloptik des Flusskrebsauges. The optical system of the crayfish eye. J. Comp. Physiol, 135, 1–19.

    Article  Google Scholar 

  • Young, S. and Taylor, V. A. (1988) Visually guided chases in ’Polyphemus pediculus. J. Exp. Biol, 137, 387–398.

    Google Scholar 

  • Zeil, J. (1983a) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J. Comp. Physiol, 150, 379–393.

    Google Scholar 

  • Zeil, J. (1983b) Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). J. Comp. Physiol, 150, 395–412.

    Article  Google Scholar 

  • Zeil, J., Nalbach, G. and Nalbach, H.-O. (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J. Comp. Physiol. A, 159, 801–811.

    Article  Google Scholar 

  • Zeil, J., Nalbach, G. and Nalbach, H.-O. (1989) Spatial vision in a flat world: optical and neural adaptations in arthropods. In: Singh, R. N., Strausfeld, N. J. (eds) Neurobiology of Sensory Systems, pp. 123–137. New York: Plenum.

    Google Scholar 

  • Zollikofer, C. P. E., Wehner, R. and Fukushi, T. (1995) Optical scaling in conspecific Cataglyphis ants. J. Exp. Biol, 198, 1637-1646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Land, M.F. (1999). Compound eye structure: Matching eye to environment. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics