Skip to main content

Abstract

Descriptions of living primates inevitably include an acknowledgement of the overwhelming importance of sight for primate behavior, and they usually identify as unique primate characteristics a number of features of the visual system. These features include frontally-directed eyes and large binocular fields, a high concentration of ganglion cells in the central retina and an expanded representation of the central visual field in the visual system, substantial numbers of uncrossed retinofugal fibers, and a visual cortex that contains multiple maps of the visual field in which inputs from the two eyes may be brought into precise register (Allman, 1982). It has been argued that the relative enlargement of brain size in primates directly reflects an increased emphasis on vision (Martin, 1990), and recent mappings of the projection pathways and functional properties of cortex serve to underline just how extensively visual information must be utilized by the primate brain. In the macaque monkey, for instance, there are a minimum of 32 or more separate visual areas lying beyond the primary visual cortex. These areas expand over a region making up at least 75% of the cortical surface area outside of striate cortex (Sereno and Allman, 1991). Less detailed maps are available for human cortex, but they too show a very substantial visual representation (Sereno et al., 1995; Tootell et al., 1996). Although it is an obvious exaggeration, it is almost justified to conclude that in many ways primate neocortex is visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, J. (1982) Reconstructing the evolution of the brain in primates through the use of comparative neurophysiology and neuroanatomical data. In Primate Brain Evolution: Methods and Concepts, (eds E. Armstrong and D. Falk ), Plenum Press, New York, pp. 13–28.

    Chapter  Google Scholar 

  • Asenjo, A. B., Rim, J. and Oprian, D. D. (1994) Molecular determinants of human red/green color discrimination. Neuron, 12, 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee, B. and Jacobs, G. H. (1985) Color vision in the ring-tailed lemur (Lemur catta). Brain, Behavior and Evolution, 26, 154–166.

    Article  CAS  Google Scholar 

  • Bowmaker, J. K. (1990) Cone visual pigments in monkeys and humans. In Advances in Photoreception (eds Committee on Vision), National Academy Press, Washington, D. C., pp. 19–30.

    Google Scholar 

  • Bowmaker, J. K. (1991) Visual pigments and colour vision in primates. In From Pigments to Perception (eds A. Valberg and B. B. Lee ), Plenum Press, New York, pp. 1–9.

    Chapter  Google Scholar 

  • Bowmaker, J. K., Astell, S., Hurst, D. M. and Mollon, J. D. (1991) Photosensitive and photostable pigments in the retinae of Old World monkeys. Journal of Experimental Biology, 156, 1–19.

    PubMed  CAS  Google Scholar 

  • Boynton, R. M. (1982) Spatial and temporal approaches for studying color vision. In Colour Vision Deficiencies VI (ed. G. Verriest ). The Hague: W. Junk, pp. 1–14.

    Google Scholar 

  • Calkins, D. K., Schein, S. J., Tsukamoto, Y. and Sterling, P. (1994) M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature, 371, 70–72.

    Article  PubMed  CAS  Google Scholar 

  • Chittka, L. and Menzel, R. (1992) The evolutionary adaptation of flower colours and insect pollinators’ colour vision. Journal of Comparative Physiology A, 171, 171–181.

    Google Scholar 

  • Cicerone, C. M. and Nerger, J. L. (1989) The relative numbers of long-wavelength-sensitive to middlewavelength-sensitive cones in the human fovea centralis. Vision Research, 29, 115–128.

    Article  PubMed  CAS  Google Scholar 

  • Ciochon, R. L. and Chiarelli, A. B. (1980) Evolutionary Biology of the New World Monkeys and Continental Drift, Plenum Press, New York.

    Book  Google Scholar 

  • Dacey, D. M. and Lee, B. B. (1994) The `blue-on’ opponent pathway in the primate retina originates from a distinct bistratified ganglion cell type. Nature, 367, 731–735.

    Article  PubMed  CAS  Google Scholar 

  • Darmall, H. J. A., Bowmaker, J. K. and Mollon, J. D. (1983) Human visual pigments: Microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society of London B, 230, 115–130.

    Article  Google Scholar 

  • De Valois, R. L. and De Valois, K. K. (1988) Spatial Vision, Oxford University Press, New York. Deegan II, J. F. and Jacobs, G. H. (1996) Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatus). American Journal of Primatology, 40, 55–66.

    Google Scholar 

  • DeValois, R. L., Morgan, H. C., Poison, M. C., Mead, W. R. and Hull, E. M. (1974) Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vision Research, 14, 53–67.

    Article  CAS  Google Scholar 

  • Dusenberry, D. B. (1992) Sensory Ecology, W. H. Freeman and Company, New York.

    Google Scholar 

  • Endler, J. A. (1993) The color of light in forests and its implication. Ecological Monographs, 63, 1–27.

    Article  Google Scholar 

  • Fleagle, J. G. (1988) Primate Adaptation and Evolution, Academic Press, San Diego.

    Google Scholar 

  • Flynn, J. J., Wyss, A. R., Charrier, R. and Swisher, C. C. (1995) An early miocene anthropoid skull from the Chilean Andes. Nature, 373, 603–607.

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom, S. A., Neitz, J., Neitz, M. and Trusk, T. C. (1994) Characterizing the photopigment genes expressed in individual human cone photoreceptors. Investigative Ophthalmology and Visual Science, 35, 1710.

    Google Scholar 

  • Harwerth, R. S. and Smith III, E. L. (1985) The rhesus monkey as a model for normal vision of humans. American Journal of Optometry and Physiological Optics, 62, 633–641.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. (1981) Comparative Color Vision, Academic Press, New York.

    Google Scholar 

  • Jacobs, G. H. (1984) Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): Color vision. Vision Research, 24, 1267–1277.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. (1990) Discrimination of luminance and chromaticity differences by dichromatic and trichromatic monkeys. Vision Research, 30, 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. (1993) The distribution and nature of colour vision among the mammals. Biological Reviews, 68, 413–471.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. (1995) Variations in primate color vision: Mechanisms and utility. Evolutionary Anthropology, 3, 196–205.

    Article  Google Scholar 

  • Jacobs, G. H. (1996) Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences USA, 93, 577–581.

    Article  CAS  Google Scholar 

  • Jacobs, G. H. (1997) Color-vision polymorphisme in New World monkeys: Implications for the evolution of primate trichromacy. In New World Primates: Ecology, Evolution and Behavior (ed. W. G. Kinzey ). Aldine de Gruyter, Hawthorne, New York, pp. 45–74.

    Google Scholar 

  • Jacobs, G. H. (1998) A perspective on color vision in platyrrhine monkeys. Vision Research, 38, 3307–3313.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. and Deegan II, J. E. (1997) Spectral sensitivity of macaque monkeys measured with ERG flicker photometry. Visual Neuroscience, 14, 921–928.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., Neitz, M. and Neitz, J. (1996a) Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London B, 263, 705–710.

    Article  CAS  Google Scholar 

  • Jacobs, G. H., Neitz, M., Deegan II, J. F. and Neitz, J. (1996b) Trichromatic colour vision in New World monkeys. Nature, 382, 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., Deegan II, J. F. and Moran, J. L. (1996c) ERG measurements of spectral sensitivity of common chimpanzee (Pan troglodytes). Vision Research, 36, 2587–2594.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H. and Deegan II, J. F. (1993) Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–256.

    Article  Google Scholar 

  • Jacobs, G. H., Deegan II, J. F., Neitz, J. A., Crognale, M. A. and Neitz, M. (1993a) Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research, 33, 1773–1783.

    Article  CAS  Google Scholar 

  • Jacobs, G. H. and Neitz, J. (1993) Electrophysiological estimates of individual variation in the L/M cone ration. In Colour Vision Deficiencies XI (ed. B. Drum ), Dordrecht: Kluwer, pp. 107–112.

    Chapter  Google Scholar 

  • Jacobs, G. H. and Neitz, J. (1985) Color vision in squirrel monkeys: Sex-related differences suggest the mode of inheritance. Vision Research, 25, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, G. H., Neitz, J.and Crognale, M. (1987) Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis). Vision Research, 27, 2089–2100.

    CAS  Google Scholar 

  • Jacobs, G. H., Neitz, J. and Neitz, M. (1993b) Genetic basis of polymorphism in the color vision of platyrrhine monkeys. Vision Research, 33, 269–274.

    Article  PubMed  CAS  Google Scholar 

  • Kay, R. F., Ross, C. and Williams, B. A. (1997) Anthropoid origins. Science 275, 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Langston, A., Casagrande, V. A. and Fox, R. (1986) Spatial resolution of the galago. Vision Research, 26, 791–796.

    Article  PubMed  CAS  Google Scholar 

  • Lennie, P. and D’Zmura, M. (1988) Mechanisms of color vision. CRC Critical Reviews in Neurobiology, 3, 333–400.

    PubMed  CAS  Google Scholar 

  • Lythgoe, J. N. (1979) The Ecology of Vision, Oxford University Press, New York.

    Google Scholar 

  • Lythgoe, J. N. and Partridge, J. C. (1989) Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 146, 1–20.

    PubMed  CAS  Google Scholar 

  • Martin, R. D. (1990) Primate Origins and Evolution. Princeton University Press, Princeton.

    Google Scholar 

  • Merbs, S. L. and Nathans, J. (1992) Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 258, 464–466.

    Article  PubMed  CAS  Google Scholar 

  • Mollon, J. D. (1991) Uses and evolutionary origins of primate color vision. In Evolution of the Eye and mVisual System (eds J. R. Cronly-Dillon and R. L. Gregory ), CRC Press, Boca Raton, pp. 306–319.

    Google Scholar 

  • Mollon, J. D. (1997)…aus dreyerley Arten von Membranen oder Molkulen: George Palmer’s legacy. In Colour Vision Deficiencies XIII, (ed. C. R. Cavonius), Dordrecht: Kluwer, pp. 3–20.

    Google Scholar 

  • Mollon, J. D. and Bowmaker, J. K. (1992) The spatial arrangement of cones in the primate fovea. Nature, 360, 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Mollon, J. D., Bowmaker, J. K. and Jacobs, G. H. (1984) Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B, 222, 222, 373–399.

    Article  CAS  Google Scholar 

  • Morgan, M. J., Adam, A. and Mollon, J. D. (1992) Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proceedings of the Royal Society of London B, 248, 291–295.

    Article  CAS  Google Scholar 

  • Nagle, M. G. and Osorio, D. (1993) The tuning of human photopigments may minimize red-green chromatic signals in natural conditions. Proceedings of the Royal Society of London B, 252, 209–213.

    Article  CAS  Google Scholar 

  • Nathans, J. (1987) Molecular biology of visual pigments. Annual Review of Neuroscience, 10, 163–194.

    Article  PubMed  CAS  Google Scholar 

  • Nathans, J., Thomas, D. and Hogness, D. S. (1986) Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science, 232, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, J. and Neitz, M. (1994) Color vision defects. In Molecular Genetics of Inherited Eye Disorders (eds A. F. Wright and B. Jay ), Harwood Academic Publishers, Reading, p. 217–257.

    Google Scholar 

  • Neitz, M. and Neitz, J. (1998) Molecular genetics and the biological basis of color vision. In Color Vision-Perspectives from Different Disciplines (eds. W. Backhaus, G. K. Werner, R. Kliegl and J. K. Werner ). Walter de Gruyter, Berlin, pp. 101–119.

    Chapter  Google Scholar 

  • Neitz, M., Neitz, J. and Jacobs, G. H. (1991) Spectral tuning of pigments underlying red-green color vision. Science, 252, 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Osorio, D. and Vorobyev, M. (1996) Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London B, 263, 593–599.

    Article  CAS  Google Scholar 

  • Polyak, S. (1957) The Vertebrate Visual System, University of Chicago Press, Chicago.

    Google Scholar 

  • Regan, B. C., Vienot, F., Charles-Dominique, P. C. Pefferkorn, S. Simmen, B., Juillot, C. and Mollon, J. D. (1996) The colour signals that fruits present to primates. Investigative Ophthalmology and Visual Science, 37, S648.

    Google Scholar 

  • Sereno, M. I. and Allman, J. M. (1991) Cortical visual areas in mammals. In The Neural Basis of Visual Function, (ed. A. G. Leventhal ), CRC Press, Boca Raton, pp 160–172.

    Google Scholar 

  • Sereno, M. L., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R. and Tootell, R. B. H. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268, 889–893.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, H. G., Wright, A. A. and Mills, S. L. (1987) Intense spectral light induced color blindness in rhesus monkeys. Documenta Ophthalmologica Proceedings Series, 46, 5–20.

    Article  Google Scholar 

  • Tootell, R. B. H., Dale, A. M., Sereno, M. I. and Malach, R. (1996) New images from human visual cortex. Trends in Neuroscience, 19, 481–489.

    Article  CAS  Google Scholar 

  • Tovée, M. J., Bowmaker, J. K. and Mollon, J. D. (1992) The relationship between cone pigments and behavioural sensitivity in a New World monkey (Callithrix jacchus jacchus). Vision Research, 32, 867–878.

    Article  PubMed  Google Scholar 

  • Vimal, R. L. P., Pokorny, J., Smith, V. C. and Shevell, S. K. (1989) Foveal cone thresholds. Vision Research, 29, 61–88.

    Article  PubMed  CAS  Google Scholar 

  • Weitz, C. J., Miyake, Y., Shinzato, K., Montag, E., Zrenner, E. Went, L. N. and Nathans, J. (1992a) Human tritanopia associated with two amino acid subsitutions in the blue sensitive opsin. American Journal of Human Genetics, 50, 498–507.

    CAS  Google Scholar 

  • Weitz, C. J., Went, L. N.and Nathans, J. (1992b) Human tritanopia associated with a third amino acid substitution in the blue sensitive opsin. American Journal of Human Genetics, 51, 444–446.

    CAS  Google Scholar 

  • Wilder, H. D., Grunert, U., Lee, B. B. and Martin, R. R. (1996) Topography of ganglion cells and photoreceptors in the retina of the New World marmoset monkey Callithrix jacchus. Visual Neuroscience, 13, 335–352.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacobs, G.H. (1999). Vision and Behavior in Primates. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics