Skip to main content

Flower advertisement for insects: Bees, a case study

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

Visual systems are generally highly adaptive, and are likely to be a reflection of the selective pressure brought to bear on the evolution of modern animals (Wald, 1940; Lythgoe, 1979). At the same time, we believe that signals, such as the colours and patterns of plants and animals, were adapted to these visual systems. Although the hypothesis of the mutual evolution of the visible environment and visual systems is based on many observations (Lythgoe, 1979), it has not yet been tested by quantitative data. To base the speculation on quantitative grounds we must specify: 1) the objects that played the main role in the evolution of the visual system of a particular animal, and 2) the visual systems to which the coloured signals were adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum, H. and von Zwehl, V. (1964) Die spectrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. Vergl Physiol 48, 357–384

    Article  Google Scholar 

  • Backhaus, W. (1991) Color opponent coding in the visual system of the honeybee, Vision Res. 31, 1381–1397.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, R. and Vorobyev, M. (1996) Metric analysis of threshold spectral sensitivity in the honeybee. Vision Res (in press)

    Google Scholar 

  • Chittka, L. (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency, J Comp Physiol A, 170, 533–543.

    Google Scholar 

  • Chittka, L. (1996) Does bee color vision predate the evolution of flower color? Naturwissenschaften, 83, 136–138.

    Article  CAS  Google Scholar 

  • Chittka, L., Beier, W., Hertel, H., Steinmann, E. and Menzel, R. (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymentoptera, J Comp Physiol A, 170, 545–563.

    CAS  Google Scholar 

  • Chittka, L. and Menzel, R. (1992) The evolutionary adaptation of flower colors and the insect pollinators’ color vision systems, J. Comp Physiol A, 171, 171–181.

    Article  Google Scholar 

  • Chittka, L., Shmida, A., Troje, N. and Menzel, R. (1993) Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vision Res. 34, 1489–1508.

    Article  Google Scholar 

  • Chittka, L., Vorobyev, M., Shmida, A. and Menzel, R. (1994) Bee colour vision-the optimal system for the discrimination of flower colours with three spectral photoreceptor types? In: Sensory systems of Arthropods (eds. Wiese, K., Gribakin S. G., Popov A.V. and Renninger G. ), Birkhauser, Berlin. Verlag, pp. 211–218.

    Google Scholar 

  • Dafni, A. (1984) Mimicry and deception in pollination. Ann. Rev. Ecol. Syst 15, 259–278.

    Article  Google Scholar 

  • Dartnall, H. J. A. (1953) The interpretation of spectral sensitivity curves. Brit. Med. Bul 9, 24.

    CAS  Google Scholar 

  • Darwin, C. (1876) Cross and self fertilisation in the vegetable kingdom, Murray, London.

    Google Scholar 

  • Daumer, K. (1956) Reizmetrische Untersuchung des Farbensehens der Bienen. Z. Vergl Physiol. 38, 413–478.

    Google Scholar 

  • Giurfa, M., Nunez, J., Chittka, L. and Menzel, R. (1995) Colour preferences of flower-naive honeybees. J Comp. Physiol A, 177, 247–259.

    Article  Google Scholar 

  • Giurfa, M., Vorobyev, M., Kevan, P. and Menzel, R. (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp. Physiol A, 178, 699–709

    Article  Google Scholar 

  • Goldsmith, T. H. (1991) The evolution of visual pigments and colour vision. In: Vision and Visual Disfunction. vol. 6: The Perception of Colour, (ed. Gouras, P.) MacMillan, London, pp. 62–89.

    Google Scholar 

  • Govardovskii, V. I. and Vorobyev, M. V. (1989) The role of colored oil drops of cones in the color vision. Sensory systems, 3, 150–159. (In Russian).

    Google Scholar 

  • Govardovskii, V. I. and Vorobyev, M. V. (1992). Photoreceptor spectral sensitivity curves and discrimination of natural colours. Abstr. of 9th International Neuroethological Congress, Montreal, pp. 24–25.

    Google Scholar 

  • Harborne, J. B. (1988) Introduction to Ecological Biochemistry, (3rd. ed.), Academic Press, London. Helmholtz, H. L. F. (1896) Hanbuch der Physiologischen Optik, ( 2nd ed. ), Voss, Humburg.

    Google Scholar 

  • Lehrer, M. (1994) Spatial vision in the honeybee: the use of different cues in different tasks. Vision Res. 34, 2363–2385.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J. N. (1979) The Ecology of Vision, Claredon Press, Oxford.

    Google Scholar 

  • Lythgoe, J. N. Partridge, J. C. (1989) Visual pigments and the acquisition of visual information. J. Exp. Biol 146, I - 20.

    Google Scholar 

  • Luther, R. (1927) Aus dem Gebiet der Farbreizmetrik. Z. Techn. Phys 8, 540–558.

    Google Scholar 

  • Maximov, V. (1984) Transformation of colour under the changing illumination. (ed. Bysov, A. L.) Nauka, Moskva (in Russian).

    Google Scholar 

  • Maximov, V. (1988). An approximation of visual absorption spectra. Sensornye Systemy, 2, 3–8.

    Google Scholar 

  • Menzel, R. (1967) Untersuchungen zum Erlernen von Spectralfarben durch die Honigbienen (Apis mellifera). Z. Vergl. Physiol, 56, 22–62.

    Article  Google Scholar 

  • Menzel, R. and Blakers, M. (1976) Colour receptors in the bee eye-morphology and spectral sensitivity. J Comp. Physiol 108, 11–33.

    Article  Google Scholar 

  • Menzel, R. and Backhaus, W. (1991) Color vision in insects, in Vision and Visual Disfunction, vol. VII. Perception of Color, (ed. Gouras, R ), MacMillan Press, Haundsmills, pp. 262–293.

    Google Scholar 

  • Menzel, R. and Shmida, A. (1993) The ecology of flower colours and the natural colour vision of insect pollinators: The Israeli flora as a study case. Biol Rev. 68, 81–120.

    Article  Google Scholar 

  • Mollon, J. (1992) Worlds of difference. Nature, 356, 410–411.

    Article  Google Scholar 

  • Nyberg, N. (1928) Zum Aufbau des Farbenkörpers im Raume aller Lichtempfindungen, Z. Phys 52, 406–419.

    Google Scholar 

  • Osorio, D. and Vorobyev, M. (1996) Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. Lond. B 263, 593–599.

    Article  CAS  Google Scholar 

  • Peitsch, D., Fietz, A., Hertel, H., de Souza, J., Ventura, D. F. and Menzel, R. (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp. Physiol A, 170, 123–40.

    Article  Google Scholar 

  • Schrödinger, E. (1920) Grundlinien einer Theorie der Farbenmetrik im Tagessehen. Ann. Phys 63, 397–520.

    Article  Google Scholar 

  • Troje, N. (1993) Spectral categories in the learning behaviour of blowflies. Z. Natuiforsch 48c, 96–104.

    Google Scholar 

  • Vorobyev, M., Chittka, L. and Menzel, R. (1993) How many colors can a bee discriminate? Are the wavelength positions of the bee color receptors optimal for this task? in Proceeding of the Göttingen Neurobiology conference 1993, p. 339.

    Google Scholar 

  • Vorobyev, M. V. and Govardovskii, V. I. (1993) At low illuminance levels monochromats are able to distinguish more shades than dichromats, and dichromats more than trichromats. In: Proceeding of the Gottingen Neurobiology conference 1993, p. 397.

    Google Scholar 

  • Walls, G. L. (1942) The Vertebrate Eye and Its Adaptive Radiation. Granbrook Institute of Science, MI: Bloofield Hills.

    Google Scholar 

  • Wyszecki, G. and Stiles, W. S. (1982) Color science: Concepts and methods, quantitative data and formulae, ( 2nd ed. ), Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vorobyev, M., Menzel, R. (1999). Flower advertisement for insects: Bees, a case study. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics