Skip to main content

Visual systems, behaviour, and environment in cephalopods

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

The vision of cephalopods is interesting for many reasons. One is the existence of the primitive cephalopod Nautilus, which has apparently changed little over the past 150 million years or so. The modern coleoid cephalopods are probably derived from ancestors that resembled Nautilus quite closely (Naeff, 1923), and its eye is among its many apparently primitive features, giving an indication of how the visual system of modern cephalopods developed. A second reason is that the eyes of cephalopods provide a striking example of convergent evolution with those of fishes. Cephalopods face similar visual problems to fishes, and superficially the eyes of the two groups are remarkably similar. However, their development and detailed structure are quite different, and fishes and cephalopods have no common ancestors which had camera eyes: they have achieved similar solutions to many problems, but by very different routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, A. Michels, J. and Young, J. Z. (1985) Memory and visual discrimination by squids. Marine Behaviour and Physiology, 11, 271– 282.

    Google Scholar 

  • Blest, A. D. (1957) The function of eyespot patterns in the Lepidoptera. Behaviour, 11, 209 – 256.

    Google Scholar 

  • Clarke, G. L. and Denton, E. J. (1962) Light and animal life. In The Sea, Vol. 1, ed. Hill, M. N. John Wiley, New York, pp. 456 – 458.

    Google Scholar 

  • Cott, H. B. (1940) Adaptive coloration in animals. Methuen, London.

    Google Scholar 

  • Daw, N. W. and Pearlman, A. L. (1974) Pigment migration and adaptation in the eye of the squid, Loligo pealei. Journal of General Physiology, 63, 22 – 36.

    Google Scholar 

  • Douglas, R. H. and Hawryshyn, C. W. (1990) Behavioural studies of fish vision: an analysis of visual capabilities. In: The Visual System of Fish, ed. Douglas, R. H. and Djamgoz M. B. A. Chapman and Hall, London, pp. 373 – 418.

    Google Scholar 

  • Dudziak, J. (1955) Ostrosc widzenia u zolwia blotnego (Emys orbicularis L.) przypatrznym i wodnym. Folia Biologica, 3, 205 – 228.

    Google Scholar 

  • Ferguson, G. P. and Messenger, J. B. (1991) A countershading reflex in cephalopods. Proceedings of the Royal Society, London, B., 243, 63 – 67.

    Google Scholar 

  • Ferguson, G. P. Messenger, J. B. and Budelman, B. U. (1994) Gravity and light influence the counter- shading reflexes of the cuttlefish Sepia officinalis. Journal of Experimental Biology, 191, 247– 256.

    Google Scholar 

  • Fiorito, G. and Scotto, P. (1992) Observational learning in Octopus vulgaris. Science, 256, 545 – 547.

    Google Scholar 

  • Flores, E. E. C. (1983) Visual discrimination testing in the squid Todarodes pacificus: experimental evidence for lack of color vision. Memoirs of the Natural Museum of Victoria, 44, 213 – 227.

    Google Scholar 

  • Godfrey, D. Lythgoe, J. N. and Rumball, D. A. (1987) Zebra stripes and tiger stripes: the spatial frequency distribution of the pattern compared to that of the background is significant in display and crypsis. Biological Journal of the Linnean Society, 32, 427– 433.

    Google Scholar 

  • Grundfest, H. (1932) The sensitivity of the sun-fish, Lepomis, to monochromatic radiation of low intensities. Journal of General Physiology, 15, 307– 328.

    Google Scholar 

  • Hanlon, R. T. (1988) Behavioural and body patterning characters useful in taxonomy and field identification of cephalopods. Malacologia, 29, 247– 264.

    Google Scholar 

  • Hanlon, R. T. and Messenger, J. B. (1988) Adaptive colouration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society, London, 320, 437– 487.

    Google Scholar 

  • Herman, L. M., Peacock, M. E, Yunker, M. P. and Madsen, C. J. (1975) Bottlenosed dolphin: Double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science, 189, 650 – 652.

    Google Scholar 

  • Holmes, W. (1940) The colour changes and colour patterns of Sepia officinalis L. Proceedings of the Zoological Society, London, A, 110, 17– 36.

    Google Scholar 

  • Hyasaka, S. D. (ed.) (1988) Marine ecological study on the habitat of Nautilus pompilius in Fiji (the second operation). Kogoshima University Research Center for the South Pacific (KUSP), Occasional Papers No. 15.

    Google Scholar 

  • Jagger, W. S. and Muntz, W. R. A. (1993) Aquatic vision and the modulation transfer properties of unlighted and diffusely lighted natural waters. Vision Research, 33, 1755 –1763.

    Google Scholar 

  • Jander, R. Daumer, K. and Waterman, T. H. (1963) Polarised light orientation by two Hawaiian cephalopods. Zeitschrift fir vergleichen Physiologie, 46, 383 – 394.

    Google Scholar 

  • Jordan, M., Chamberlain, J. A. and Chamberlain, R. B. (1988) Response of Nautilus to variation in ambient pressure. Journal of experimental Biology, 137, 175 –189.

    Google Scholar 

  • Jerlov, N. G. (1968) Optical Oceanography. Elsevier, Amsterdam, London, New York.

    Google Scholar 

  • Kayes, R. J. (1974) The daily activity pattern of Octopus vulgaris in a natural habitat. Marine Behaviour and Physiology, 2, 337– 343.

    Google Scholar 

  • Kirschfeld, K. (1974) The absolute sensitivity of lens and compound eyes. Zeitschrift fir Naturforschung, 29C, 592 – 596.

    Google Scholar 

  • Kirschfeld, K. (1976) The resolution of lens and compound eyes. In Natural processing in visual systems, ed. Zettler, F. and Weiler, R. Springer-Verlag, Berlin.

    Google Scholar 

  • Kishigami, A. Hara, R. and Hara, T. (1988) Photopigments in the retina of Nautilus pompilius. Proceedings of the Yamada Conference XXI, 373 – 374.

    Google Scholar 

  • Kito, Y., Narita, K., Seidou, M., Michinomae, M., Yoshihara, K., Partridge, J. C. and Herring, P. J. (1992). A blue-sensitive visual pigment based on 4-Hydroxyretinal is found widely in mesopelagic cephalopods. In Structures and functions of retinal proteins. Ed. Rigand, J. L. Cooloque INSERM/John Libby Eurotext Ltd., pp. 411– 414.

    Google Scholar 

  • Lettvin, J. Y. and Pitts, W. H. (1962) Neapolitan studies. Quarterly Progress Report, Research Laboratory of Electronics, Massachussetts Institute of Technology, 27, 288 – 290.

    Google Scholar 

  • Loew, E. R. and McFarland, W. N. (1990) The underwater light environment. In: The Visual System of Fish, ed. Douglas, R. H. and Djamgoz M. B. A. Chapman and Hall, London, pp. 1–43.

    Chapter  Google Scholar 

  • Lythgoe, J. N. (1979) The ecology of vision. Clarendon Press, Oxford.

    Google Scholar 

  • Marshall, N. J. and Messenger, J. B. (1996) Colour-blind camouflage. Nature, 382, 409.

    Article  Google Scholar 

  • Mather, J. A. (1991a) Foraging, feeding and prey remains in middens of juvenile Octopus vulgaris (Mollusca: Cephalopoda). Journal of the Zoological Society, London, 224, 27– 39.

    Google Scholar 

  • Mather, J. A. (1991b) Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A, 168, 491– 497.

    Google Scholar 

  • Matsui, S., Seidou, M., Horiuchi, S., Uchiyama, I. and Kito, Y. (1988). Adaptation of a deep-sea cephalopod to the photic environment. Journal of General Physiology, 92, 55 – 66.

    Google Scholar 

  • Messenger, J. B. (1981) Comparative physiology of vision in molluscs. In Handbook of Sensory Physiology, Vol. VII/6C, Comparative Physiology and Evolution of Vision in Invertebrates, ed. H. Autrum. Springer-Verlag, Berling, Heidelberg, pp. 3–200.

    Google Scholar 

  • Messenger, J. B., Wilson, A. P. and Hedge, A. (1973). Some evidence for colour blindness in Octopus. Journal of Experimental Biology, 59, 77– 94.

    Google Scholar 

  • Michinomae, M., Masuda, H., Seidou, M. and Kito, Y. (1994) Structural basis for wavelength discrimination in the banked retina of the firefly squid Watasenia scintillans. Journal of Experimental Biology, 193, 1–12.

    Google Scholar 

  • Moody, M. F. and Parriss, J. R. (1961) The discrimination of polarised light by Octopus; a behavioural and morphological study. Zeitschrift für Vergleichen Physiologie, 44, 268 – 291.

    Google Scholar 

  • Moynihan, M. (1985) Communication and noncommunication in cephalopods. Indiana University Press, Bloomington.

    Google Scholar 

  • Muntz, W. R. A. (1977) Pupillary responses of cephalopods. In: Symposium on the Biology of Cephalopods, ed. Nixon, M. and Messenger, J. B. Symposia of the Zoological Society of London, 38, 277– 285.

    Google Scholar 

  • Muntz, W. R. A. (1986) The spectral sensitivity of Nautilus pompilius. Journal of Experimental Biology, 126, 513 –7.

    Google Scholar 

  • Muntz, W. R. A. (1987) Visual behaviour and visual sensitivity of Nautilus pompilius. In: Nautilus: The Biology and Paleobiology of a Living Fossil, ed. Saunders, W. B. and Landman, N. H., Plenum Press, N.Y., pp. 231– 244.

    Google Scholar 

  • Muntz, W. R. A. (1990) Stimulus, environment and vision in fishes. In: The Visual System of Fish, ed. Douglas, R. H. and Djamgoz, M. B. A. Chapman and Hall, London. pp. 491– 511.

    Google Scholar 

  • Muntz, W. R. A. (1994a) Spatial summation in the photoactic behaviour of Nautilus pompilius. Marine Behaviour and Physiology, 24, 183 –187.

    Google Scholar 

  • Muntz, W. R. A. (1994b) Effects of light on the efficacy of traps for Nautilus pompilius. Marine Behaviour and Physiology, 24, 189 –193.

    Google Scholar 

  • Muntz, W. R. A. and Gwyther, J. (1988) Visual acuity in Octopus pallidus and Octopus australis. Journal of experimental Biology, 134, 119 – 29.

    Google Scholar 

  • Muntz, W. R. A. and Raj, U. (1984) On the visual system of Nautilus pompilius. Journal of Experimental Biology, 109, 253 – 263.

    Google Scholar 

  • Muntz, W. R. A. and Wentworth, S. L. (1987) An anatomical study of the retina of Nautilus pompilius. Biological Bulletin, 173, 387– 97.

    Google Scholar 

  • Naeff, A. (1923) Die Cephalopoden. Fauna e Flore del Golfo di Napoli, 35, 1– 863.

    Google Scholar 

  • Nicol, J. A. C. (1958) Observations on luminescence in pelagic animals. Journal of the Marine Biological Association, U.K. 37, 705 –752.

    Google Scholar 

  • Northmore, D. P. M. (1977) Spatial summation and light adaptation in the goldfish visual system. Nature, London, 268, 450 – 451.

    Google Scholar 

  • Northmore, D. P. M. and Dvorak, C. A. (1979) Contrast sensitivity and acuity of the goldfish. Vision Research, 19, 255 – 261.

    Google Scholar 

  • O’Dor, R. K. (1982) Respiratory metabolism and swimming performance of the squid, Loligo opalescens. Canadian Journal of Fisheries and Aquatic Science, 39, 580 – 587.

    Google Scholar 

  • O’Dor, R. K. and Webber, D. M. (1986) The constraints on cephalopods: why squid aren’t fish. Canadian Journal of Zoology, 64, 1591–1605.

    Article  Google Scholar 

  • O’Dor, R. K., Forsythe, J., Webber, D. M., Wells, J. and Wells, M. J. (1993) Activity levels in Nautilus in the wild. Nature London, 362, 626 – 628.

    Google Scholar 

  • Packard, A. (1972) Cephalopods and fish: the limits of convergence. Biological Reviews, 47, 241– 307.

    Google Scholar 

  • Packard, A. and Saunders, G. D. (1971) Body patterns of Octopus vulgaris and maturation of the response to disturbance. Animal Behaviour, 19, 780 –790.

    Google Scholar 

  • Raleigh, Lord. (1891). On pin-hole photography. Philosophical Magazine, 31, 87– 99.

    Google Scholar 

  • Sanders, F. K. and Young, J. Z. (1940) Learning and functions of the higher learning centres of Sepia. Journal of Neurophysiology, 3, 501– 526.

    Google Scholar 

  • Saunders, W. B. and Ward, P. D. (1987) Ecology, distribution, and population characteristics of Nautilus. In: Nautilus: The Biology and Paleobiology of a Living Fossil, ed. Saunders, W. B. and Landman, N. H., Plenum Press, N.Y., pp. 137–162.

    Google Scholar 

  • Schusterman, R. J. and Balliet, R. F. (1970). Visual acuity of the harbour seal and the stellar sea lion underwater. Nature London, 226, 563 – 564.

    Google Scholar 

  • Shasher, N. and Cronin, T. W. (1996) Polarisation contrast vision in Octopus. Journal of Experimental Biology, 199, 999 –1004.

    Google Scholar 

  • Tinbergen, L. (1939) Zur Fortpflanzungsethologie von Sepia officinalis L. Archive Néerland Zoologie, 3, 323 – 364.

    Google Scholar 

  • Voss, G. L. (1977) Present status and new trends in cephalopod systematics. In: Symposium on the Biology of Cephalopods, Ed. Nixon, M. and Messenger, J. B., Symposia of the Zoological Society of London, 38, 49 – 60.

    Google Scholar 

  • Wells, M. J. (1978) Octopus: physiology and behaviour of an advanced invertebrate. Chapman and Hall, London.

    Google Scholar 

  • White, G. M. (1924) Reactions of the larvae of the shrimp, Palaemonetes vulgaris, and the squid, Loligo pealii, to monochromatic light. Biological Bulletin, 47, 265 – 273.

    Google Scholar 

  • Yamamoto, M. (1984) Photoreceptor collaterals in the cuttlefish retina. Zoological Science, 1, 501– 503.

    Google Scholar 

  • Young, J. Z. (1963) Light-and dark-adaptation in the eyes of some cephalopods. Proceedings of the Zoological Society, London, 140, 255 – 270.

    Google Scholar 

  • Young J. Z. (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon Press, Oxford. Young, M. (1972) Pinhole imagery. American Journal of Physics,40, 715 –720.

    Google Scholar 

  • Young, R. E. (1973) Information feedback from photophores and ventral countershading in mid-water squids. Pacific Science, 27, 1–7.

    Google Scholar 

  • Young, R. E. and Mencher, F. M. (1980). Bioluminescence in mesopelagic squid: diel color change during counterillumination. Science N.Y., 208, 1286 –1288.

    Google Scholar 

  • Zahn, L P. (1984) The rhythmic activity of Nautilus pompillus with notes on its behaviour and ecology in Fiji. The Veliger, 27, 19 – 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muntz, W.R.A. (1999). Visual systems, behaviour, and environment in cephalopods. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics