Skip to main content

Molecular biology of photoreceptor spectral sensitivity

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

The wavelengths of spectral sensitivities of the visual systems of animals extend from about 300 nm in the near ultraviolet to above 800 nm in the far red. Some species utilize almost this entire spectral range, whereas others are restricted to narrower ranges within these broad limits (Bowmaker, 1991a). The spectral range of ‘visible’ light is limited by two factors. First, because of the filtering effects of the atmosphere, most (about 80%) of the spectral radiation at the earth’s surface is restricted to wavelengths between about 300 and 1100 nm with the energy distribution having a maximum at about 480 nm and the quantum distribution maximal at about 555 nm. Secondly, the quantal energy of photons above about 850 nm is too low to lead to photoisomerization of organic molecules, whereas photons below about 300 nm have sufficiently high energies to be destructive to proteins (see Knowles and Dartnall, 1977).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Maghtheh, M., Gregory, C., Inglehearn, C., Hardcastle, A. and Bhattacharya, S. (1993) Rhodopsin mutations in autosomal dominant retinitis pigmentosa. Human Mutation, 2, 249 — 255.

    Google Scholar 

  • Applebury, M. L. and Hargrave, P. A. (1986) Molecular biology of visual pigments. Vision Research, 26, 1881–1885.

    Google Scholar 

  • Asenjo, A. B., Rim, J. and Oprian, D. D. (1994) Molecular determinants of human red/green color discrimination. Neuron, 12, 1131–1138.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J. M. (1993) The probable arrangement of the helices in G protein-coupled receptors. European Molecular Biology Organisation Journal, 12, 1693 —1703.

    Google Scholar 

  • Barlow, H. B. (1982) What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vision Research, 22, 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Bellingham, J., Wilkie, S. E., Morris, A. G., Bowmaker, J. K. and Hunt, D. M. (1997) Characterisation of the ultraviolet-sensitive opsin gene in the honey bee, Apis mellifera. European Journal of Biochemistry, 243, 775 — 781.

    Google Scholar 

  • Bowmaker, J. K. (1983) Trichromatic colour vision: why only three receptor channels? Trends in Neuro-science, 6, 41–43.

    Article  Google Scholar 

  • Bowmaker, J. K. (1990) Visual pigments of fishes, in The Visual System of Fish (eds R. H. Douglas and M. B. A. Djamgoz ), Chapman and Hall, London, pp. 81–107.

    Chapter  Google Scholar 

  • Bowmaker, J. K. (1991a) Evolution of visual pigments and photoreceptors, in Vision and Visual Dysfunction, 2, Evolution of the Eye and Visual System (eds R.L. Gregory and J.R. Cronly-Dillon), Macmillan, London, pp. 63 — 81.

    Google Scholar 

  • Bowmaker, J. K. (1991b) Visual pigments and colour vision in primates, in From Pigments to Perception (eds A. Valberg and B.B. Lee), Plenum, New York, pp. 1— 9.

    Google Scholar 

  • Bowmaker, J. K., Govardovskii, V. I., Shukolyukov, S. A., Zueva, L. V., Hunt, D. M., Sideleva, V. G. and Smimova, O. G. (1994) Visual pigments and the photic environment: the cottoid fish of lake Baikal. Vision Research, 34, 591— 605.

    Google Scholar 

  • Bowmaker, J. K., Heath, L. A., Wilkie, S. E. and Hunt, D. M. (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Research, 37, 2183 — 2194.

    Google Scholar 

  • Bowmaker, J. K., Hunt, D. M. and Mollon, J. D. (1997) Primate visual pigments: their spectral tuning and evolution, in John Dalton’s Colour Vision Legacy (eds C. M. Dickinson, I. J. Murray and D. C.rden), Taylor and Francis, London, pp. 37— 46.

    Google Scholar 

  • Bownds, D. (1967) Site of attachment of retinal in rhodopsin. Nature, 216, 1178 —1181.

    Google Scholar 

  • Chan, T., Lee, M. and Sakmar, T. P. (1992) Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. Journal of Biological Chemistry, 267, 9478 — 9480.

    Google Scholar 

  • Chang, B. S. W., Crandall, K. A., Carulli, J. P. and Hartl, D. L. (1995) Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Molecular Phylogenetics and Evolution, 4, 33 — 43.

    Google Scholar 

  • Chiu, M. I., Zack, D. J., Wang, Y. and Nathans, J. (1994) Murine and bovine blue cone pigment genes: Cloning and characterization of two new members of the S family of visual pigments. Genomics, 21, 440 — 443.

    Google Scholar 

  • Cowman, A. F., Zuker, C. S. and Rubin, G. M. (1986) An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye. Cell, 44, 705 —710.

    Google Scholar 

  • Crescitelli, F. (1977) The visual pigments of geckos and other vertebrates: an essay in comparative biology, in Handbook of Sensory Physiology, V1115, The Visual System in Vertebrates (ed F. Crescitelli), Springer, Berlin, pp. 391— 449.

    Google Scholar 

  • DeCaluwé, G. L. J., Bovee-Geurts, P. H. M., Rath, P., Rothschild, K. J. and de Grip, W. J. (1995) Effect of carboxyl mutations on functional properties of bovine rhodopsin. Biophysical Chemistry, 56, 79 — 87.

    Google Scholar 

  • Deeb, S.S., Jorgensen, Al., Battisti, L., Iwasaki, L. and Motulsky, A.G. (1994) Sequence divergence of the red and green visual pigments in great apes and humans. Proceedings of the National Academy of Sciences, 91, 7262 —7266.

    Google Scholar 

  • Deeb, S. S., Lindsey, D. T., Hibiya, Y., Sanocki, E., Winderickx, J., Teller, D. Y. and Motulsky, A. G. (1992) Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. American Journal of Human Genetics, 51, 687–700.

    PubMed  CAS  Google Scholar 

  • Dulai, K. S., Bowmaker, J. K., Mollon, J. D. and Hunt, D. M. (1994) Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of Great apes and Old World monkeys. Vision Research, 34, 2483 — 2491.

    Google Scholar 

  • Fager, L. Y. and Fager, R. S. (1979) Halide control of colour of the chicken cone pigment iodopsin. Experimental Eye Research, 29, 401— 408.

    Google Scholar 

  • Fitzgibbon, J., Appukuttan B., Gayther, S., Wells, D., Delhanty, J. and Hunt, D. M. (1994) Localisation of the human blue cone pigment gene to chromosome band 7g31.3–32. Human Genetics, 93, 79 — 80.

    Google Scholar 

  • Franke, R. R., Sakmar, T. P., Graham, R. M. and Khorana, H. G. (1992) Structure and function in rhodopsin: studies of the interaction between the rhodopsin cytoplasmic domain and transducin. Journal of Biological Chemistry, 267, 14767–14774.

    PubMed  CAS  Google Scholar 

  • Fryxell, K. L. and Meyerowitz, E. M. (1987) An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. European Molecular Biology Organisation Journal, 6, 443 — 451.

    Google Scholar 

  • Hargrave, P. A. (1982) Rhodopsin chemistry, structure and topology. Progress in Retinal Research, 1, 1— 51. Hargrave, P. A., McDowell, J. H., Feldmann, R. J., Atkinson, P. H., Rao, J. K. M. and Argos, P. (1984)

    Google Scholar 

  • Rhodopsin’s protein and carbohydrate structure: selected aspects. Vision Research,24, 1487–1499.

    Google Scholar 

  • Hashimoto, S., Takeuchi, H., Nakagawa, M. and Tsuda, M. (1996) Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of trp residues in the transition to acid metarhodopsin. Febs Letters, 398, 239 — 242.

    Google Scholar 

  • Hisatomi, O., Kayada, S., Aoki, Y., Iwasa, T. and Tokunaga, E (1994) Phylogenetic relationships among vertebrate visual pigments. Vision Research, 34, 3097— 3102.

    Google Scholar 

  • Hisatomi, O., Satoh, T., Barthel, L. K., Stenkamp, D. L., Raymond, P. A. and Tokunaga, F. (1996) Molecular-cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish. Vision Research, 36, 933 — 939.

    Google Scholar 

  • Hope, A. J., Partridge, J. C., Dulai, K. S. and Hunt, D. M. (1997) Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes. Proceedings of the Royal Society of London B,264, 155 —163.

    Google Scholar 

  • Hunt, D. M., Cowing, J. A., Patel, R., Appukuttan, B., Bowmaker, J. K. and Mollon, J. D. (1995a) Sequence and evolution of the blue cone pigment gene in Old and New World primates. Genomics, 27, 535 — 538.

    Google Scholar 

  • Hunt, D. M., Cowing, J. A., Patel, R., Appukuttan, B., Bowmaker, J. K. and Mollon, J. D. (1995b) Sequence and spectral tuning of blue cone photopigments in Old and New World primates. Investigative Ophthalmology und Visual Science, 36, 889.

    Google Scholar 

  • Hunt, D. M., Dulai, K. S., Cowing, J. A., Julliot, C., Mollon, J. D., Bowmaker, J. K., Li, W.-H. and Hewett-Emmett, D. (1998) Molecular evolution of trichromacy in primates. Vision Research, 38, 3299 — 3306.

    Google Scholar 

  • Hunt, D. M., Fitzgibbon, J., Slobodyanyuk, S. and Bowmaker, J. K. (1996) Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research, 36, 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, D. M., Williams, A. J., Bowmaker, J. K. and Mollon, J. D. (1993) Structure and evolution of the polymorphic photopigment gene of the marmoset. Vision Research, 33, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson, R. E., Hunt, D. M., Bowmaker, J. K. and Mollon, J. D. (1992) Sequence divergence and copy number of the middle-wave and long-wave photopigment genes in Old World monkeys. Proceedings of the Royal Society of London B, 247, 145 —154.

    Google Scholar 

  • Jacobs, G. H. (1993) The distribution and nature of colour vision among the mammals. Biological Reviews, 68, 413 — 471.

    Google Scholar 

  • Jacobs, G. H. and Neitz, J. (1987a) Inheritance of color vision in a New World monkey (Saimiri sciureus). Proceedings of the National Academy of Sciences, 84, 2545 — 2549.

    Google Scholar 

  • Jacobs, G. H. and Neitz, J. (1987b) Polymorphism of the middle wavelength cone in two species of South American monkey: Cebus apella and Callicebus moloch. Vision Research, 27, 1263 —1268.

    Google Scholar 

  • Jacobs, G. H., Neitz, J. and Crognale, M. A. (1987) Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fusicollis). Vision Research, 27, 2089 — 2100.

    Google Scholar 

  • Jacobs, G. H., Neitz, J. and Deegan II, J. F. (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature, 353, 655 — 656.

    Google Scholar 

  • Jacobs, G. H., Neitz, J. and Neitz, M. (1993) Genetic basis of polymorphism in the color vision of platyrrhine monkeys. Vision Research, 33, 269 — 274.

    Google Scholar 

  • Jacobs, G. H., Neitz, M. S., Deegan II, J. F. and Neitz, J. (1996) Trichromatic colour vision in New World monkeys. Nature, 382, 156 —158

    Google Scholar 

  • Johnson, R. L., Grant, K. B., Zankel, T. C., Boehm, M. F., Merbs, S. L., Nathans, J. and Nakanishi, K. (1993) Cloning and expression of goldfish opsin sequences. Biochemistry, 32, 208 — 214.

    Google Scholar 

  • Karnik, S. S., Sakmar, T. P., Chen, H. B. and Khorana, H. G. (1988) Cysteine residue-110 and residue-187 are essential for the formation of correct structure in bovine rhodopsin. Proceedings of The National Academy of Sciences, 85, 8459 — 8463.

    Google Scholar 

  • Kawamura, S. and Yokoyama, S. (1993) Molecular characterization of the red visual pigment gene of the American chameleon (Anolis carolinensis). Febs Letters, 323, 247— 251.

    Google Scholar 

  • Kleinschmidt, J. and Hdrosi, F. I. (1992) Anion sensitivity and spectral tuning of cone visual pigments in situ. Proceedings of the National Academy of Sciences, 89, 9181— 9185.

    Google Scholar 

  • Knowles, A. (1976) The effects of chloride ions upon chicken visual pigments. Biochemical and Biophysical Research Communications, 73, 56 — 62.

    Google Scholar 

  • Knowles, A. (1980) The chloride effect in chicken red cone receptors. Vision Research, 20, 475 — 483.

    Google Scholar 

  • Knowles, A. and Dartnall, H. J. A. (1977) The Photobiology of Vision, in The Eye, 2B, (ed H. Dayson), Academic Press, New York, pp. 1— 689.

    Google Scholar 

  • Knox, B. E. (1995) Xenopus laevis violet cone opsin mRNA, complete coding sequence. GenBank, Accession U23463.

    Google Scholar 

  • Kojima, D., Okano, T., Fukada, Y., Shichida, Y., Yoshizawa, T. and Ebrey, T.G. (1992) Cone visual pig-ments are present in gecko rod cells. Proceedings of the National Academy of Sciences, 89, 6841— 6845.

    Google Scholar 

  • König, B., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A. and Hofmann, K. P. (1989) 3 cyto-plasmic loops of rhodopsin interact with transducin. Proceedings of The National Academy of Sciences, 86, 6878 — 6882.

    Google Scholar 

  • Kuwata, O., Imamoto, Y., Okano, T., Kokame, K., Kojima, D., Matsumoto, H., Morodome, A., Fukada, Y., Shichida, Y., Yasuda, K., Shimura, Y. and Yoshizawa, T. (1990) The primary structure of iodopsin, a chicken red-sensitive cone pigment. Febs Letters, 272, 128 —132.

    Google Scholar 

  • Max, M., McKinnon, P. J., Seidenman, K. J., Barren, R. K., Applebury, M. L., Takahashi, J. S. and Margolskee, R. F. (1995) Pineal opsin: a nonvisual opsin expressed in chick pineal. Science, 267, 1502 —1506.

    Google Scholar 

  • Merbs, S. L. and Nathans, J. (1992a) Absorption spectra of human cone pigments. Nature, 356, 433 — 435.

    Google Scholar 

  • Merbs, S. L. and Nathans, J. (1992b) Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 258, 464 — 466.

    Google Scholar 

  • Merbs, S. L. and Nathans, J. (1993) Role of hydroxyl-bearing amino acids in differentially tuning the absorption spectra of the human red and green cone pigments. Photochemistry and Photobiology, 58, 706 —710.

    Google Scholar 

  • Mollon, J. D. (1991) The uses and evolutionary origins of primate colour vision, in Vision and Visual Dysfunction, 2, Evolution of the Eye and Visual System (eds R. L. Gregory and J. R. Cronly-Dillon), Macmillan, London, pp. 306 — 319.

    Google Scholar 

  • Mollon, J. D., Bowmaker, J. K. and Jacobs, G. H. (1984) Variations of colour vision in a New World Primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B, 222, 373 — 399.

    Google Scholar 

  • Montell, C., Jones, K., Zuker, C. S. and Rubin, G. A. (1987) A second opsin gene expressed in the ultraviolet-sensitive R7 photoreceptor cells of Drosophila melanogaster. Journal of Neuroscience, 7, 1558 —1566.

    Google Scholar 

  • Morris, A., Bowmaker, J. K. and Hunt, D. M. (1993) The molecular basis of a spectral shift in the rhodopsins of two species of squid from different photic environments. Proceedings of the Royal Society of London B, 254, 233 — 240.

    Google Scholar 

  • Nakayama, T. A. and Khorana, H. G. (1991) Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. Journal of Biological Chemistry, 266, 4269 — 4275.

    Google Scholar 

  • Nathans, J. (1990a) Determinations of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry, 29, 9746 — 9752.

    Google Scholar 

  • Nathans, J. (1990b) Determinations of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry, 29, 937— 942.

    Google Scholar 

  • Nathans, J., Piantanida, T. E, Eddy, R. L., Shows, T. B. and Hogness, D. S. (1986a) Molecular genetics of inherited variations in human color vision. Science, 232, 203 — 210.

    Google Scholar 

  • Nathans, J., Thomas, D. and Hogness, D. S. (1986b) Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science, 232, 193 — 203.

    Google Scholar 

  • Neitz, J., Neitz, M. and Jacobs, G. H. (1989) Analysis of fusion gene and encoded photopigment of colour-blind humans. Nature, 342, 679 — 682.

    Google Scholar 

  • Neitz, J., Neitz, M. and Jacobs, G. H. (1993) More than three different cone pigments among people with normal color vision. Vision Research, 33, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Neitz, M., Neitz, J. and Jacobs, G. H. (1991) Spectral tuning of pigments underlying red-green color vision. Science, 252, 971— 974.

    Google Scholar 

  • Neitz, M., Neitz, J. and Jacobs, G. H. (1995) Genetic basis of photopigment variations in human dichromats. Vision Research, 35, 2095 — 2103.

    Google Scholar 

  • North, R. A. (1989) Neurotransmitters and their receptors: from the clone to the clinic. Seminars in the Neurosciences, 1, 81— 90.

    Google Scholar 

  • Novitsky, I. Y., Zak, P. P. and Ostrovsky, M. A. (1989) The effects of anions on absorption spectrum of the longwavelength retinal-containing pigment iodopsin in native frog cones (a microspectrophotometric study). Bioorganic Chemistry, 15, 1037–1043, (in Russian).

    Google Scholar 

  • Okano, T., Kojima, D., Fukada, Y., Shichida, Y. and Yoshizawa, T. (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proceedings of the National Academy of Sciences, 89, 5932 — 5936.

    Google Scholar 

  • Okano, T., Yoshizawa, T. and Fukada, Y. (1994) Pinopsin is a chicken pineal photoreceptive molecule. Nature, 372, 94 — 97.

    Google Scholar 

  • Oprian, D. D., Asenjo, A. B., Lee, N. and Pelletier, S. L. (1991) Design, chemical synthesis, and expres-sion of genes for the three human color vision pigments. Biochemistry, 30, 11367–11372.

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov, Y. A., Abdulaev, N. G. and Bogachuk, A. S. (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. Febs Letters, 230, 1— 5.

    Google Scholar 

  • Provencio, I., Loew, E. R. and Foster, R. G. (1992) Vitamin A2-based visual pigments in fully terrestrial vertebrates. Vision Research, 32, 2201— 2208.

    Google Scholar 

  • Sakmar, T. P., Franke, R. R. and Khorana, G. H. (1989) Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proceedings of the National Academy of Science, 86, 8309 — 8313.

    Google Scholar 

  • Sanocki, E., Lindsey, D. T., Winderickx, J., Teller, D. Y., Deeb, S. S. and Motulsky, A. G. (1993) Serine/alanine amino acid polymorphism of the L and M cone pigments: effects on Rayleigh matches among deuteranopes, protanopes and color normal observers. Vision Research, 33, 2139 — 2152.

    Google Scholar 

  • Schertler, G. X., Villa, C. and Henderson, R. (1993) Projection structure of rhodopsin. Nature, 362, 770 —772.

    Google Scholar 

  • Shyue, S-K., Hewett-Emmett, D., Sperling, H. G., Hunt, D. M., Bowmaker, J. K., Mollon, J. D., and Li, W-H. (1995) Adaptive Evolution of Color Vision Genes in Higher Primates. Science 269, 1265 —1267.

    Google Scholar 

  • Tovée, M. J., Bowmaker, J. K. and Mollon, J. D. (1992) The relationship between cone pigments and behavioural sensitivity in a New World monkey (Callithrix jacchus jacchus). Vision Research, 32, 867— 878.

    Google Scholar 

  • Towner, P., Harris, R, Wolstenholme, A. J., Hill, C., Worm, K. and Gärtner, W. (1997) Primary structure of locust opsins: a speculative model which may account for ultraviolet wavelength light detection. Vision Research, 37, 495 — 503.

    Google Scholar 

  • Travis, D. S., Bowmaker, J. K. and Mollon, J. D. (1988) Polymorphism of visual pigments in a callitrichid monkey. Vision Research, 28, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Tsin, A. T. C., Liebman, P. A., Beatty, D. D. and Drzymala, R. (1981) Rod and cone visual pigments in the goldfish. Vision Research, 21, 943 — 946.

    Google Scholar 

  • Wang, J. K., McDowell, J. H. and Hargrave, P. A. (1980) Site of attachment of 11-cis retinal in bovine rhodopsin. Biochemistry, 19, 5111— 5117.

    Google Scholar 

  • Wang, Z., Asenjo, A. B. and Oprian, D. D. (1993) Identification of the Cl-binding site in the human red and green color vision pigments. Biochemistry, 32, 2125 — 2130.

    Google Scholar 

  • Weiss, R. E., Carmack, E. C. and Koropalov, V. H. (1991) Deep water renewal and biological productivity in Lake Baikal. Nature, 349, 665 — 669.

    Google Scholar 

  • Wilkie, S. E., Vissers, R M. A. M., Das, D., DeGrip, W. J., Bowmaker, J. K. and Hunt, D. M. (1998) The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochemical Journal, 330, 541— 547.

    Google Scholar 

  • Williams, A. J., Hunt, D. M., Bowmaker, J. K. and Mollon, J. D. (1992) The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. European Molecular Biology Organisation Journal, 11, 2039 — 2045.

    Google Scholar 

  • Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G. and Deeb, S. S. (1992) Polymorphism in red photopigment underlies variation in colour matching. Nature, 356, 431— 433.

    Google Scholar 

  • Yokoyama, R., Knox, B. E. and Yokoyama, S. (1995) Rhodopsin from the fish, Astyanax: role of tyrosine-261 in the red shift. Investigative Ophthalmology und Visual Science, 36, 939 — 945.

    Google Scholar 

  • Yokoyama, R. and Yokoyama, S. (1990) Convergent evolution of the red-and green-like visual pigment genes in fish, Astyanax fasciatus, and human. Proceedings of the National Academy of Sciences, 87, 9315 — 9318.

    Google Scholar 

  • Yokoyama, S. (1994) Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. Molecular Biology and Evolution, 11, 32 — 39.

    Google Scholar 

  • Yokoyama, S. (1995) Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Molecular Biology and Evolution, 12, 53 — 61.

    Google Scholar 

  • Zhukovsky, E. A. and Oprian, D. D. (1989) The effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science, 246, 928 — 930.

    Google Scholar 

  • Zuker, C. S., Montell, C., Jones, K. Laverty, T. and Rubin G. M. (1987) A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homology with other signal-transducing molecules. Journal of Neuroscience, 7, 1550 —1557.

    Google Scholar 

  • Casti, J. (1997) Would be Worlds: How simulation is changing the frontiers of science. New York, John Wiley. 242 pp.

    Google Scholar 

  • Eddington, A. (1935) New Pathways in Science. London, MacMillan.

    Google Scholar 

  • Gordon, H. R. and Morel, A. Y. (1983). Remote assessment of ocean color for interpretation of satellite imagery: a review. New York, Springer-Verlag.

    Book  Google Scholar 

  • Isemer, H. J. and Hasse, L. (1986) The Bunker Climate Atlas of the North Atlantic Ocean. Berlin, Springer-Verlag. 218 pp.

    Google Scholar 

  • Levitus, S. and Boyer, T. P. (1994) World Ocean Atlas 1994. Washington, D.C., Government Printing Office.

    Google Scholar 

  • Liu, C. C. (1997) Simulation of ocean colour. Imperial College, Huxley School, Ocean Resources group. ( Unpublished Report )

    Google Scholar 

  • Lythgoe, J. N. (1979) The Ecology of Vision. Oxford, Clarendon Press, 244 pp.

    Google Scholar 

  • Lythgoe, J. N. and Lythgoe, G. (1971) Fishes of the Sea. London, Blandford Press, 320 pp.

    Google Scholar 

  • Lythgoe, J. N. and Partridge, J. C. (1989) Visual pigments and the acquisition of visual information. J. Exp. Biol. 146, 1— 20.

    Google Scholar 

  • Lythgoe, J. N. and Partridge, J. C. (1991) The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Research, 31, 361— 371.

    Google Scholar 

  • Lythgoe, J. N., Muntz, W. R. A. and Partridge, J. C. et al. (1994) The ecology of the visual pigments of snappers (Lutjanidae) on the Great Barrier Reef. J. Comp. Physiol. A, 174, 461— 467.

    Google Scholar 

  • Mobley, C. T. (1994) Light and Water: Radiative Transfer in Natural Waters. San Diego, Academic Press. 592 pp.

    Google Scholar 

  • Woods, J. D. and Barkmann, W. (1994) Simulating the upper ocean plankton ecosystem by the Lagrangian Ensemble method. Phil. Trans. Roy. Soc. London B., 343, 27— 31

    Google Scholar 

  • Woods, J. D. and Lythgoe, J. N. (Eds) (1977) Underwater Science, Oxford, Oxford University Press, 325 pp.

    Google Scholar 

  • Lythoe, J. N. (1979) The Ecology of Vision. Clarendon Press, Oxford.

    Google Scholar 

  • Partridge, J. C. and Douglas, R. H. (1995) Far-red sensitivity of dragon fish. Nature 375, 21-22.

    Google Scholar 

  • Wagner, H. -J. and Djamgoz, M. B. A. (1993) Spinule: A case for retinal symaptic plasticity. Trends in Neuroscience 16, 201-206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bowmaker, J.K., Hunt, D.M. (1999). Molecular biology of photoreceptor spectral sensitivity. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics