Skip to main content

Ecological aspects of vertebrate visual ontogeny

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

The life history of many species is comprised of several stages characterized by distinct anatomical, physiological, behavioral and ecological adaptations. Through evolution, some animals have come to select different habitats for each of the stages of their life history. This is because some environments provide conditions favorable to early growth and development, but may be limiting for the juvenile and adult stages. To take advantage of conditions more favorable to the later stages of their life history, animals often move to another environment, at some point in their ontogeny. Movement from one habitat to another, while providing benefits to the animal, also subjects it to new environmental conditions, some of which may affect the visual system’s performance. Through ontogenetic adaptation processes, the visual system of such species is modified, presumably to increase its efficiency in each of the new environments it encounters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlbert, I.-B. (1976) Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zoologica (Stockholm), 57, 13–35.

    Google Scholar 

  • Alexander, G., Sweeting, R. and McKeown, B. (1994) The shift in visual pigment dominance in the retinae of juvenile coho salmon (Oncorhynchus kisutch): An indicator of smolt status. Journal of Experimental Biology, 195, 185–197.

    PubMed  Google Scholar 

  • Allen, D. M., McFarland, W. N., Munz, F. W. and Poston, H. A. (1973) Changes in the visual pigments of trout. Canadian Journal of Zoology, 51, 901–914.

    Article  PubMed  CAS  Google Scholar 

  • Archer, S., Hope, A. and Partridge, J. C. (1995) The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proceedings of the Royal Society of London Series B-Biological Sciences, 262, 289–295.

    Article  CAS  Google Scholar 

  • Bathelt, V. D. (1970) Experimentelle and vergleichend morphologische Untersuchungen am visuellen System von Teleostiem. Zoologische Jahrbucher Abteilung fur Anatomie and Ontogenie der Tiere, 87, 402–470.

    Google Scholar 

  • Beatty, D. D. (1966) A study of the succession of visual pigments in Pacific salmon (Oncorhynchus). Canadian Journal of Zoology, 44, 429–453.

    Article  PubMed  CAS  Google Scholar 

  • Beatty, D. D. (1975) Visual pigments of the American eel Anguilla rostrata. Vision Research, 15, 771–776.

    Article  CAS  Google Scholar 

  • Beatty, D. D. (1984) Visual pigments and the labile scotopic visual system of fish. Vision Research, 24, 1563–1573.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, L, Browman, H. I. and Hawryshyn, C. W. (1993) Optic nerve response and retinal structure in rainbow trout of different sizes. Vision Research, 33, 1739–1746.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, L., Novales Flamarique, I. and Hawryshyn, C. W. (1997) Cone photoreceptor topography in the retina of sexually mature Pacific salmonid fishes. Journal of Comparative Neurology, 383, 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Blaxter J. H. S. (1968) Light intensity, vision and feeding in young plaice. Journal of Experimental Marine Biology and Ecology, 2, 293–307.

    Article  Google Scholar 

  • Blaxter, J. H. S. (1986) Development of sense organs and behavior of teleost larvae with special reference to feeding and predator avoidance. Transactions of the American Fisheries Society, 115, 98–114.

    Article  Google Scholar 

  • Boehlert, G. W. (1979) Retinal development in postlarval through juvenile Sebastes diploproa: adaptions to a changing photic environment. Revue Canadienne de Biologie, 38, 265–280.

    Google Scholar 

  • Bowmaker, J. K. and Kunz, Y. W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (salmo trutta): age dependent changes. Vision Research, 27 (12), 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  • Braisted, J. E., Essman, T. F. and Raymond, P. A. (1994) Selective regeneration of photoreceptors in goldfish retina. Development, 120, 2409–2419.

    PubMed  CAS  Google Scholar 

  • Breck, J. E. and Gitter, M. J. (1983) Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish. Canadian Journal of Fisheries and Aquatic Sciences, 40, 162–167.

    Article  Google Scholar 

  • Browder, L. W., Erickson, C. A. and Jeffery, W. R. (1991) Developmental Biology, Saunders College, Philadelphia.

    Google Scholar 

  • Browman, H. I. and Hawryshyn, C. W. (1992) Thyroxine induces a precocial loss of ultraviolet photosensitivity in rainbow trout (Oncorhynchus mykiss, Teleostei). Vision Research, 32, 2303–2312.

    Article  PubMed  CAS  Google Scholar 

  • Browman, H. I. and Hawryshyn, C. W. (1994) The developmental trajectory of ultraviolet photosensitivity in rainbow trout is altered by thyroxine. Vision Research, 11, 1397–1406.

    Article  Google Scholar 

  • Browman, H. I. and O’Brien, W. J. (1992) The ontogeny of search behavior in the white crappie, Pomoxis annularis. Environmental Biology of Fishes, 34, 181–195.

    Article  Google Scholar 

  • Browman, H. I., Gordon, W. C., Evans, B. I. and O’Brien, W. J. (1990) Correlation between histological and behavioral measures of visual acuity in a zooplanktivorous fish, the white crappie (Pomoxis annularis). Brain Behavior and Evolution, 35, 85–97.

    Article  CAS  Google Scholar 

  • Brown, A.M. (1990) Development of visual sensitivity to light and color vision in human infants: a critical review. Vision Research, 30, 1159–1188.

    Article  PubMed  CAS  Google Scholar 

  • Champalbert, G., Macquart-Moulin, C., Patriti, G. and Chiki, D. (1991) Ontogenic variations in the phototaxis of larval and juvenile sole Solea solea L. Journal of Experimental Marine Biology and Ecology, 149, 207–225.

    Article  Google Scholar 

  • Chung, S. H., Keating, M. J. and Bliss, T. V. P. (1974) Functional synaptic relationships during the development of the retino-tectal projection in amphibians. Proceedings of the Royal Society of London Series B: Biological Sciences, 187, 449–459.

    Article  CAS  Google Scholar 

  • Coughlin, D. J. and Hawryshyn, C. W. (1994) Ultraviolet sensitivity in the torus semicircularis of juvenile rainbow trout (Oncorhynchus mykiss). Vision Research, 34, 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  • Crescitelli, F. (1958) The natural history of photopigments, in Photobiology, (ed Newburgh ), Colloquium, Oregon State College, Corvallis, pp. 30–51.

    Google Scholar 

  • Crescitelli, F. (1972) The visual cells and visual pigments of the vertebrate eye, in Textbook of Sensory Physiology, (ed Dartnall, H. J. A. ), Springer-Verlag, Berlin, pp. 246–363.

    Google Scholar 

  • Dartnall, H. J. A., Lander, M. R and Munz, E W. (1961) Periodic changes in the visual pigment of a fish, in Progress in Photobiology, (eds Christiansen, B. and Buchmann, B. ), Elsevier, Amsterdam, pp. 203–213.

    Google Scholar 

  • De Miguel, E., Rodicio, M. C. and Anadon, R. (1990) Organization of the visual system in larval lampreys: An HRP study. Journal of Comparative Neurology, 302, 529–542.

    Article  PubMed  Google Scholar 

  • Douglas, R. H., Partridge, J. C. and Hope, A. J. (1995) Visual and lenticular pigments in the eyes of demersal deep-sea fishes. Journal of Comparative Physiology [A], 177, 111–122.

    Google Scholar 

  • Dunlop, S. A. and Beazley, L. D. (1981) Changing retinal ganglion cell distribution in the frog Heleiloporus eyrei. Journal of Comparative Neurology, 202, 221–236.

    Article  CAS  Google Scholar 

  • Dunlop, S. A. and Beazley, L. D. (1984) A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis. Vision Research, 24, 417–427.

    Article  CAS  Google Scholar 

  • Evans, B. I. and Fernald, R. D. (1990) Metamorphosis and fish vision. Journal of Neurobiology, 21, 1037–1052.

    Article  PubMed  CAS  Google Scholar 

  • Evans, B. I. and Fernald, R. D. (1993) Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus). Visual Neuroscience, 10, 1055–64.

    Article  PubMed  CAS  Google Scholar 

  • Evans, B. I., Harosi, F. I. and Fernald, R. D. (1993) Photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanus). Visual Neuroscience, 10, 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  • Fernald, R. D. (1990) Visual pigments of fishes, in The Visual System of Fish, (eds Douglas, R. H. and Djamgoz, M. B. A. ), Chapman & Hall, London, pp. 81–107.

    Google Scholar 

  • Frank, B. D. and Hollyfield, J. G. (1987) Retina of the tadpole and frog: Delayed dendritic development in a subpopulation of ganglion cells coincident with metamorphosis. Journal of Comparative Neurology, 266, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Gaze, R. M., Keating, M. J., Ostberg, A. and Chung, S. H. (1979) The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retino-tectal projection. Journal of Embryology and Experimental Morphology, 53, 103–143.

    PubMed  CAS  Google Scholar 

  • Gaze. R. M., Keating, M. J. and Chung, S. H. (1974) The evolution of the retinotectal map during development in Xenopus. Proceedings of the Royal Society of London Series B: Biological Sciences, 185, 301–330.

    Article  Google Scholar 

  • Govardovskii, V.I. and Lychakov, D. V. (1984) Visual cells and visual pigments of the lamprey, Lampetra fluvialis. Journal of Comparative Physiology [A], 154, 279–286.

    Article  Google Scholar 

  • Harosi, F. I. and Kleinschmidt, J. (1993) Visual pigments in the sea lamprey, Petromizon marinus. Visual Neuroscience, 10, 711–715.

    Article  CAS  Google Scholar 

  • Hawryshyn, C. W. and Harosi, F. I. (1994) Spectral characteristics of visual pigments in rainbow trout Oncorhynchus mykiss. Vision Research, 34, 1385–1392.

    Article  CAS  Google Scholar 

  • Hawryshyn, C. W., Arnold, M. G., Chiasson, D. J. and Martin, P. C. (1989) The ontogeny of ultraviolet sensitivity in rainbow trout Salmo gairdneri. Visual Neuroscience, 2, 247–254.

    Article  CAS  Google Scholar 

  • Hoar, W. S. (1988) The physiology of smolting salmonids. Fish Physiology, XIB, 275–3443.

    Google Scholar 

  • Hoskins, S. G. (1990) Metamorphosis of the amphibian eye. Journal of Neurobiology, 21, 970–989.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R. and Easter, S. S. Jr. (1977) Growth of the adult goldfish eye. II. Increase in retinal cell numbers. Journal of Comparative Neurology, 176, 331–342.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R. and Fernald, R. D. (1981) Genesis of rods in teleost fish retina. Nature (London), 293, 178–198.

    Google Scholar 

  • Just, J. J., Kraus-Just, J. and Check, D. A. (1981) Survey of chordate metamorphosis, in Metamorphosis, (eds Gilbert, L. I. and Frieden, E. ), Plenum Press, New York, pp. 265–326.

    Chapter  Google Scholar 

  • Kaltenbach, J. C. (1953) Local action of thyroxin on amphibian metamorphosis. II. Development of the eyelids, nictitating membrane, cornea, and extrinsic ocular muscles in Rana pipiens larvae effected by thyroxin-cholesterol implants. Journal of Experimental Zoology, 122, 41–50.

    Article  Google Scholar 

  • Kelley, M. W., Turner, J. K. and Reh, T. A. (1995) Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina. Development, 121, 3777–3785.

    PubMed  CAS  Google Scholar 

  • Kennedy, M. C. and Rubinson, K. (1977) Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. Journal of Comparative Neurology, 171, 465–480.

    Article  CAS  Google Scholar 

  • Kurz-Isler, G. and Wolburg, H. (1982) Morphological study on the regeneration of the retina in rainbow trout after ouabain-induced damage: evidence of dedifferentiation of photoreceptor cells. Cell and Tissue Research, 225, 165–178.

    Article  PubMed  CAS  Google Scholar 

  • Li, K. T., Wetterer, J. K. and Hairston, N. G. Jr. (1985) Fish size, visual resolution, and prey selectivity. Ecology, 66, 1729–1735.

    Article  Google Scholar 

  • Loew, E. R. and Wahl, C. M. (1991) A short-wavelength sensitive cone mechanism in juvenile yellow perch, Perca flavescens. Vision Research, 31, 353–360.

    Article  CAS  Google Scholar 

  • Lyall, A. H. (1957) The growth of trout retina. Quarterly Journal of Microscopical Science, 98, 101–110.

    Google Scholar 

  • Lythgoe, J. N. and Partridge, J. C. (1991) The modelling of optimal visual pigments of dichromatic teleosts in green coastal waters. Vision Research, 31, 361–371.

    Article  PubMed  CAS  Google Scholar 

  • Maier, W. and Wolburg, H. (1979) Regeneration of the goldfish retina after exposure to different doses of ouabain. Cell and Tissue Research, 202, 99–118.

    Article  PubMed  CAS  Google Scholar 

  • Markle, D. F., Harris, P. M. and Toole, C. L. (1992) Metamorphosis and an overview of early-life-history stages in Dover sole Microstomus pacifïcus. Fishery Bulletin, 90, 285–301.

    Google Scholar 

  • Mathis, U., Schaeffel, E. and Howland, H. C. (1988) Visual optics in toads (Bufo americanus). Journal of Comparative Physiology [A], 163, 201–213.

    Article  PubMed  CAS  Google Scholar 

  • McFarland, W. N. (1991) The visual world of coral reef fishes, in The Ecology of Fishes on Coral Reefs, (ed Sale, P. E ), Academic Press, San Diego, pp. 16–38.

    Google Scholar 

  • McFarland, W. N. and Allen, D. M. (1977) The effect of extrinsic factors on two distinctive rhodopsinporphyropsin systems. Canadian Journal of Zoology, 55, 1000–1009.

    Article  PubMed  CAS  Google Scholar 

  • Munk, O. (1990) Changes in the visual cell layer of the duplex retina during growth of the eye of a deep-sea teleost, Gempylus Serpens Cuvier, 1829. Acta Zoologica, 71, 89–95.

    Article  Google Scholar 

  • Muntz, W. A and Reuter, T. (1966). Visual pigments and spectral sensitivity in Rana temporaria and other European tadpoles. Vision Research, 6, 601–618.

    Article  PubMed  CAS  Google Scholar 

  • Muntz, W. A. and Mouat, G. S. V. (1984) Annual variations in the visual pigments of brown trout inhabiting lochs providing different light environments. Vision Research, 24, 1575–1580.

    Article  PubMed  CAS  Google Scholar 

  • Neave, D. A. (1984) The development of visual acuity in larval plaice (Pleuronectes platessa L.) and turbot (Scophthalmus maximus L.). Journal of Experimental Marine Biology and Ecology, 78, 167–175.

    Article  Google Scholar 

  • Nguyen, V. S. and Straznicky, C. (1989) The development and the topographic organization of the retinal ganglion cell layer in Bufo marinus. Experimental Brain Research, 75, 345–353.

    CAS  Google Scholar 

  • Novales Flamarique, I. and Hawryshyn, C. W. (1996) Retinal development and visual sensitivity of young Pacific sockeye salmon Oncorhynchus nerka. Journal of Experimental Biology, 199, 869–882.

    Google Scholar 

  • Ohman, P. (1976) Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vision Research, 16, 659–662.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, K. (1993) Development of color vision in goldfish: Selective delayed maturation of blue vision. Vision Research, 33, 1665–1672.

    Article  PubMed  CAS  Google Scholar 

  • Pankhurst, N. W. (1984) Retinal development in larval and juvenile European eel, Anguilla anguilla (L.). Canadian Journal of Zoology, 62, 335–343.

    Article  Google Scholar 

  • Pankhurst, P. M. and Butler, P. (1996) Development of the sensory organs in the greenback flounder, Rhombosolea tapirina. Marine and Freshwater Behaviour and Physiology, 28, 55–73.

    Article  Google Scholar 

  • Pankhurst, R. M., Pankhurst, N. W. and Montgomery, J. C. (1993) Comparison of behavioral and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, Triptergiidae (Forster, 1801). Brain Behavior and Evolution, 42, 178–188.

    Article  CAS  Google Scholar 

  • Polansky, J. R. and Bennett, T. R (1973) Alterations in physical parameters and proteins of lens from Rana catesbeiana during development. Developmental Biology, 33, 380–408.

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz, B. (1972) Metamorphosis of frog vision: changes in ganglion cell physiology and anatomy. Experimental Neurology, 82, 187–199.

    Article  Google Scholar 

  • Potter, I. C. (1980) Ecology of larval and metamorphosing lampreys. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1641–1657.

    Article  Google Scholar 

  • Powers, M. K., Bassi, C. J., Rone, L. A. and Raymond, P. A. (1988a) Lighting conditions and retinal development in goldfish: absolute visual sensitivity. Investigative Ophthalmology and Visual Science Supplement, 29, 37–43.

    CAS  Google Scholar 

  • Powers, M. K., Bassi, C. J., Rone, L. A. and Raymond, P. A. (1988b) Visual detection by the rod system in goldfish of different sizes. Vision Research, 28, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Rahmann, H., Jeserich, G. and Zeutzius, I. (1979) Ontogeny of visual acuity of rainbow trout under normal conditions and light deprivation. Behaviour, 68, 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, P. A. (1991a) Cell determination and positional cues in the teleost retina: development of photoreceptors and horizontal cells, in Development of the Visual System, (eds Shatz, C. and Lam, D. M. K. ), M.I.T. Press, Boston. ( Retina Research Foundation Symposium ) vol. 3, pp. 59–78.

    Google Scholar 

  • Raymond, P. A. (1991b) Retinal regeneration in teleost fish, in Regeneration of Vertebrate Sensory Cells, (ed Rubel, E. ), Ciba Foundation Symposium, Chichester, Wiley, Vol. 160, pp. 171–191.

    Google Scholar 

  • Raymond, P. A., Reifler, M. J. and Rivlin, R. K. (1988) Regeneration of goldfish retina: Rod precursors are a likely source of regenerated cells. Journal of Neurobiology, 19, 431–463.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, T. (1969) Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana Temporaria L.). Acta Zoologica Fennica, 122, 1–64.

    Google Scholar 

  • Shand, J. (1993) Changes in the spectral absorption of cone visual pigments during the settlement of the goatfish Upeneus tragula: the loss of red sensitivity as a benthic existence begins. Journal of Comparative Physiology [A], 173, 115–121.

    Google Scholar 

  • Shand, J. (1994) Changes in retinal structure during development and settlement of the goatfish Upeneus tragula. Brain Behavior and Evolution, 43, 51–60.

    Article  CAS  Google Scholar 

  • Shand, J. (1997) Ontogenetic changes in retinal structure and visual acuity: a comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environmental Biology of Fishes, 49, 307–322.

    Article  Google Scholar 

  • Shand, J., Partridge, J. C., Archer, S. N., Potts, G. W. and Lythgoe, J. N. (1988) Spectral absorbance changes in the violet/blue sensitive cones of the juvenile pollack, Pollachius pollachius. Journal of Comparative Physiology [A], 163, 699–703.

    Article  Google Scholar 

  • Sivak, J. G. and Warburg, M. R. (1980) Optical metamorphosis of the eye of Salamandra salamandra. Canadian Journal of Zoology, 58, 2059–2064.

    Article  Google Scholar 

  • Sivak, J. G. and Warburg, M. R. (1983) Changes in optical properties of the eye during metamorphosis of an anuran, Pelobates syriacus. Journal of Comparative Physiology [A], 150, 329–332.

    Article  Google Scholar 

  • Straznicky, K. and Gaze, R. M. (1971) The growth of the retina in Xenopus laevis: an autoradiographic study. Journal of Embryology and Experimental Morphology, 26, 67–79.

    PubMed  CAS  Google Scholar 

  • Studnicka, F. K. (1912) Ueber die Entwicklung and die Bedeutung der Seitenaugen von Ammocoetes. AnatomischerAnzeiger, 41, 561–578.

    Google Scholar 

  • Udin, S. B. (1990) Development of orderly connections in the retinotectal system, in Science of Vision, (ed Leibovic, K. N. ), Springer-Verlag, New York, pp. 125–150.

    Chapter  Google Scholar 

  • van der Meer, H. J. (1994) Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain Behavior and Evolution, 44, 40–49.

    Article  Google Scholar 

  • van der Meer, H. J. (1995) Visual resolution during growth in a cichlid fish: A morphological and behavioral case study. Brain Behavior and Evolution, 45, 25–33.

    Article  Google Scholar 

  • Wald, G. (1945) The chemical evolution of vision. Harvey Lectures, 41, 117–160.

    PubMed  Google Scholar 

  • Wetts, R., Serbedzija, G. N. and Fraser, S. E. (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Developmental Biology, 136, 254–263.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, T. G. (1979) Retinal red sensitivity under dark adapted conditions. Brain Research, 175, 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Wilt, F. H. (1959) The differentiation of visual pigments in metamorphosing larvae of Rana catesbeiana. Developmental Biology, 1, 199–233.

    Article  CAS  Google Scholar 

  • Wood, R. and Partridge, J. C. (1993) Opsin substitution induced in retinal rods of the eel (Anguilla anguilla (L.)): a model for G-protein-linked receptors. Proceedings of the Royal Society of London Series B: Biological Sciences, 254, 227–232.

    Article  CAS  Google Scholar 

  • Wood, R, Partridge, J. C. and DeGrip, W. J. (1992) Rod visual pigment changes in the elver of the eel Anguilla anguilla L. measured by microspectrophotometry. Journal of Fish Biology, 41, 601–611.

    Article  Google Scholar 

  • Zaunreiter, M., Junger, H. and Kotrschal, K. (1991) Retinal morphology of cyprinid fishes: A quantitative histological study of ontogenic changes and interspecific variation. Vision Research, 31, 383–394.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beaudet, L., Hawryshyn, C.W. (1999). Ecological aspects of vertebrate visual ontogeny. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics