Skip to main content
  • 935 Accesses

Abstract

This section will examine how x-ray procedures have been adapted for use in palaeobiology, and specifically techniques of photomicroscopy, applicable to microfossils, contact x-radiography for use on macrofossils, and a brief outline of computer tomography and its application in palaeontology. X-rays occur in that part of the electromagnetic spectrum with wavelengths between 20–0.01nm (see figure 34.1, section 34 ELECTRON MICROSCOPY TECHNIQUES). These very short wavelengths have the ability for greater penetration and higher resolution than visible light observations (Hooper 1965). This factor, coupled with the ability of x-rays to penetrate matter, make it an ideal medium for the non-destructive observation of the internal features of an object. Examples readily known and encountered by most people include medical and dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BARTLETT, M. R and HAEDRICH, R. L. 1966. Techniques in the radiography of fishes. Transactions of the American Fisheries Society. 95, 99–101.

    Article  Google Scholar 

  • BE, A. W. H, JONGEBLOED, W. L and MCINTYRE, A. 1969. X-ray microscopy of Recent Planktonic foraminifera. Journal of Paleontology. 43, (6), 1384–1396.

    Google Scholar 

  • BOUMA, A. H. 1964. Notes on x-ray interpretation of marine sediments. Marine Geology. 2, 278–309.

    Article  Google Scholar 

  • BOUMA, A. H. 1969. Methods for the Study of Sedimentary Structures Wiley-Interscience (New York). xvi + 458p.

    Google Scholar 

  • CLARK, S and MORRISON, I. 1995. CT scan of fossils, pp 323–329 in Chapter 12, Methods and use of CT scan and X-ray: In; P. Leiggi and P. May (eds), Vertebrate Paleontological Techniques, Volume 1. Cambridge University Press. 368 p.

    Google Scholar 

  • CONROY, G. C and VANNIER, M. W. 1984. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high resolution computer tomography. Science. 226, 456–458.

    Article  Google Scholar 

  • CONROY, G. C and VANNIER, M. W. 1985. Endocranial volume determination of matrix-filled fossil skulls using high resolution computer tomography, pp 419–426: In; P. V. Tobias (ed), Homonid evolution: Past, present and future Alan R. Liss (New York).

    Google Scholar 

  • COOK, S. F, BROOKS, S. T and EZRA-COHN, H. E. 1962. Histological studies on fossil bone. Journal of Paleontology. 36, (3), 483–494.

    Google Scholar 

  • DAVIS, B. L and WALAWENDER, M. J. 1982. Quantitative mineralogical analysis of granitoid rocks: a comparison of x-ray and optical techniques. American Mineralogist. 67, 1135–1143.

    Google Scholar 

  • HAMBLIN, W, K. 1962. X-ray radiography in the study of structures in homogenous sediments. Journal of Sedimentary Petrology 32, (2), 201–210.

    Google Scholar 

  • HAMBLIN, W, K. 1971. X-ray photography, pp 251–284: In; R. E. Carver (ed), Procedures in Sedimentary Petrology. Wiley-Interscience (New York). xiii + 653 p.

    Google Scholar 

  • HARBERSETZER, J. 1994. Radiography of fossils, pp 329–339 in Chapter 12, Methods and use of CT scan and X-ray: In; P. Leiggi and P. May (eds), Vertebrate Paleontological Techniques, Volume 1. Cambridge University Press. 368 p.

    Google Scholar 

  • HAUBITZ, B, PROKOP, M, DOHRING, W, OSTROM, J. H and WELLENHOFER, P. 1988. Computer tomography of Archaeopteryx. Paleobiology. 14, 206–213.

    Google Scholar 

  • HEDLEY, R. H. 1957. Microradiography applied to the study of foraminifera. Micropaleontology. 3, (1), 19–28. HILL, G, W, DORSEY, M. E, WOODS, J. C and MILLER, R. J. 1979. A radiographic scanning technique for cores. Marine Geology. 29, 93–106.

    Google Scholar 

  • HOOPER, K. 1959. X-ray absorption techniques applied to statistical studies of foraminifera populations. Journal of Paleontology. 33, (4), 631–60.

    Google Scholar 

  • HOOPER, K. 1965. X-ray microscopy in morphological studies of microfossils, pp 320–326: In; B. Kummel and D. Raup (eds), Handbook of Paleontological Techniques. W. H. Freeman and Co., ( San Francisco). xiii + 852 p.

    Google Scholar 

  • HOTTINGER, L and MEHL, J. 1991. X-ray microscopy in micropalaeontology. Microscopy and Analysis. No. 21, 21–23.

    Google Scholar 

  • LEARY, P. N and HART, M. B. 1988. X-raying planktonic foraminifera. Journal of Micropalaeontology.7, (1), 43–44.

    Google Scholar 

  • MacINTYRE, G. T. 1976. A simplified method for x-ray stereographs of small specimens. Journal of Paleontology. 50, (2), 357–358.

    Google Scholar 

  • McGOWAN, C. 1989a. Computer tomography reveals further details of Excalibosaurus, A putative ancestor for the swordfish-like ichthyosaur Eurhinosaurus. Journal of Vertebrate Paleontology. 9, 269–281.

    Article  Google Scholar 

  • McGOWAN, C. 1989b. The ichthyosaurian tailbend: a verification problem facilitated by computer tomography. Paleobiology. 15, 429–436.

    Google Scholar 

  • McGOWAN, C. 1990. Computer tomography confirms that Eurhinosaurus (Reptilia: Ichthyosauria) does have a tailbend. Canadian Journal of Earth Science. 27, (11), 1541–1545.

    Article  Google Scholar 

  • McGOWAN, C. 1991. An ichthosaur forefin from the Triassic of British Columbia exemplifying Jurassic features. Canadian Journal of Earth Science. 28, (10), 1553–1560.

    Article  Google Scholar 

  • SAVRDA, C. E, BOTTJER, D. J and GORSLINE, D. S. 1985. An image-enhancing oil technique for friable, diatomaceous rocks. Journal of Sedimentary Petrology. 55, (4), 604–605.

    Google Scholar 

  • SCHMIDT, R. A. M. 1952. Microradiography of microfossils. Science. 115, 91.

    Article  Google Scholar 

  • WHYBROW, P. J. 1982. Preparation of the cranium of the holotype of Archaeopteryx lithographica from the collections of the British Museum (Natural History). Neues Jahrbuch für Mineralogie, Geologie und Paldontologie, Monatshefte. H3, 184–192.

    Google Scholar 

  • ZANGERL, R. 1965. Radiographic techniques, pp 305–320: In; B. Kummel and D. Raup (eds), Handbook of Paleontological Techniques. W. H. Freeman and Co., ( San Francisco). xiii + 852 p.

    Google Scholar 

  • ZANGERL, R and SCHULTZE, H-P. 1989. X-radiographic techniques and applications, pp 165–178: In; R. M. Feldman, R. E. Chapman and J. T. Hannibal (eds), Paleotechniques. The Paleontographical Society Special Publication. 4. iv + 358 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Owen R. Green

About this chapter

Cite this chapter

Green, O.R. (2001). X-Radiography techniques. In: A Manual of Practical Laboratory and Field Techniques in Palaeobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0581-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0581-3_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4013-8

  • Online ISBN: 978-94-017-0581-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics