Skip to main content

Agroecological Benefits from Weeds

  • Chapter

Abstract

We begin by stating a basic premise: that weed science must be fundamentally concerned, like all of agricultural science, with the imperative of sustainability. This concern underlies the mounting questions about the profitability, long-term efficacy, and environmental safety of the discipline’s historical focus: herbicidal management of weeds (i.e., “plants out of place”). Herbicide-based approaches are currently relied upon in managed ecosystems of many sorts: e.g., farms, forests, and waterways (Cousens and Mortimer, 1995; Sheley et al., 1997). Our own assessment is that economically, ecologically, and agronomically sustainable weed management systems cannot be attained by current concepts and means of weed management. In addition to concerns for agricultural sustainability, there is rapidly-growing recognition that biological invasions by plants are a troublesome component of global change (i.e., large-scale detrimental changes in ecological systems that provide “life-support” functions to humanity; Daily, 1997; Mack et al., 2000). Weed scientists are actively considering how they can contribute to the scientific and social response to this problem. The challenge is to expand the scope of weed science from current emphases on herbicides and field-crop agroecosystems to the larger work of coping with invasive plants in ecosystems of all kinds, including areas that are managed to preserve their “natural” qualities. Below, we argue that progress towards more expansive and sustainable notions of weed management will require new theories of weeds and weed management that are based on a broader view of the agroecological roles of weeds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen M.F., Allen E.B., Friese C.F. Response of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 1989; 111: 45–49.

    Article  Google Scholar 

  • Altieri M.A. The ecological role of biodiversity in agroecosystems. Agricult Ecosys Environ 1999; 74: 19–31.

    Google Scholar 

  • Altieri M.A. Agroecology: The Science of Sustainable Agriculture. 2nd ed. Boulder, CO: Academic Press, 1995.

    Google Scholar 

  • Altieri M.A. Biodiversity and Pest Management in Agroecosystems. Binghampton, NY: Food Products Press, 1994.

    Google Scholar 

  • Altieri M.A. “The influence of adjacent habitats on insect populations in crop fields.” In Biodiversity and Pest Management in Agroecosystems,M. Altieri, ed. New York: Haworth Press, 1994; pp. 109–130.

    Google Scholar 

  • Altieri M.A. How can we best use biodiversity in agroecosystems? Outlook Agr 1991; 20:15–23.

    Google Scholar 

  • Altieri M.A. “The impact, uses, and ecological role of weeds in agroecosystems.” In Weed Management in Agroecosystems: Ecological Approaches, M.A. Altieri, M. Liebman, eds. Boca Raton, FL: CRC Press, Inc., 1988; pp. 1–8.

    Google Scholar 

  • Altieri M.A., Letourneau D.K. Vegetation diversity and insect pest outbreaks. Crit Rev Plant Sci 1984; 2: 131–69.

    Article  Google Scholar 

  • Altieri M.A., Whitcomb W.H. Manipulation of insect populations through seasonal disturbance of weed communities. Prot Ecol 1979; 1: 185–202.

    Google Scholar 

  • Altieri M.A., Wilson R.C., Schmidt L.L. The effects of living mulches and weed cover on the dynamics of foliage-and soil-arthropod communities in three crop systems. Crop Prot 1985; 4: 201–213.

    Article  Google Scholar 

  • Andow D.A., Hidaka K. Experimental natural history of sustainable agriculture: syndromes of production. Agricult Ecosys Environ 1989; 27: 447–462.

    Article  Google Scholar 

  • Barbosa P., Benrey B. “The influence of plants on insect parasitoids: implications for conservation biological control.” In Conservation Biological Control, P. Barbosa, ed. New York, NY: Academic Press, 1998; pp. 55–82.

    Chapter  Google Scholar 

  • Barbosa P., Wratten S.D. “The influence of plants on invertebrate predators: implications to conservation biological control.” In Conservation Biological Control, P. Barbosa, ed. New York, NY: Academic Press, 1998; pp. 83–100.

    Chapter  Google Scholar 

  • Bender J. Future Harvest. Lincoln, NE: University of Nebraska Press, 1993.

    Google Scholar 

  • Bethlenfalvay G.J. “Mycorrhizae and crop productivity.” In Mycorrhizae in Sustainable Agriculture, G.J. Bethlenfalvay, R Linderman, eds. ASA Special Publication No. 54, Madison, WI: American Society of Agronomy, 1992a; pp. 1–27.

    Google Scholar 

  • Bethlenfalvay G.J. “Preface.” In Mycorrhizzae in Sustainable Agriculture,G.J. Bethlenfalvay, R. Linderman, eds. ASA Special Publication No. 54, Madison, WI: American Society of Agronomy, 1992b; pp. viii-xiii.

    Google Scholar 

  • Bethlenfalvay G.J., Mihara K.L., Schreiner R.P., McDaniel H. Mycorrhizae, biocides and biocontrol: 1. Herbicide-mycorrhiza interactions in soybean and cocklebur treated with bentazon. Appl Soil Ecol 1996a; 3: 197–204.

    Article  Google Scholar 

  • Bethlenfalvay G.J., Schreiner R.P., Mihara K.L., McDaniel H. Mycorrhizae, biocides and biocontrol: 2. Mycorrhizal fungi enhance weed control and crop growth in a soybean-cocklebur association treated with the herbicide bentazon. Appl Soil Ecol 1996b; 3: 205–214.

    Article  Google Scholar 

  • Bever J.D. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 2002; 244: 281–290.

    Article  CAS  Google Scholar 

  • Bever J.D., Morton J.B., Antonovics J., Schultz P.A. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 1996; 84: 71–82.

    Article  Google Scholar 

  • Bever J.D., Westover K.M., Antonovics J. Incorporating the soil community into plant-population dynamics-the utility of the feedback approach. J Ecol 1997; 85: 561–573.

    Article  Google Scholar 

  • Boucher D.H. “Beneficials in agricultural soils.” In Agroecology, C.R. Carroll, J.H. Vandermeer, P.M. Rosset, eds. NY: McGraw-Hill, 1990; pp. 329–340.

    Google Scholar 

  • Boucher D.H. (ed.) The Biology of Mutualism: Ecology and Evolution. Oxford, UK: Oxford University Press, 1985.

    Google Scholar 

  • Bronstein J.L. Conditional outcomes in mutualistic interactions. Trends Ecol Evolut 1994; 9:214–217. Brussaard L. Biodiversity and ecosystem functioning in soil. Ambio 1997; 26: 563–570.

    Google Scholar 

  • Brussaard L. Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 1998; 9: 123135.

    Google Scholar 

  • Bugg R.L. Using cover crops to manage arthropods on truck farms. HortSci 1992; 27: 741–745.

    Google Scholar 

  • Bugg R.L., Ehler L.E., Wilson L.T. Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. Hilgardia 1987; 55: 1–53.

    Google Scholar 

  • Bye R.A. Qualites-ethnoecology of edible greens-past, present and future. J Ethnobiol 1981; 1:109–114. Callaway R.M. Positive interactions among plants. Bot Rev 1995; 6: 306–349.

    Google Scholar 

  • Cardwell C., Hassall M., White P. Effects of headland management on carabid beetle communities in Breckland cereal fields. Pedobiologia 1994; 38: 50–62.

    Google Scholar 

  • Carpenter S.R., Cottingham K.L. Resilience and restoration of lakes. Consery Ecol 1997; 1:2. Available online with updates at http://www.consecol.org/voll/issl/art2.

    Google Scholar 

  • Chacon J.C., Gliessman S.R. Use of the “non-weed” concept in traditional tropical agroecosystems of southeastern Mexico. Agro-ecosystems 1982; 8: 1–11.

    Article  Google Scholar 

  • Cocannouer J.A. Weeds: Guardians of the Soil. Old Greenwich, CT: Devin-Adair, 1950.

    Google Scholar 

  • Conway G.R, Barbier E.B. After the Green Revolution: Sustainable Agriculture for Development. London: Earthscan Publications, 1990.

    Google Scholar 

  • Council for Agricultural Science and Technology. Benefits of Biodiversity. Ames, IA: CAST, 1999.

    Google Scholar 

  • Cousens R, Mortimer M. Dynamics of Weed Populations. Cambridge, UK: Cambridge University Press, 1995.

    Book  Google Scholar 

  • Crawley M.J. “Chance and timing in biological invasions.” In Biological Invasions: A Global Perspective, J.A. Darke, H.A. Mooney, F. di Castri, R.H. Groves, F.J. Kruger, M. Rejmanek, M. Williamson, eds. Chichester, UK: John Wiley and Sons, 1989; pp. 407–424.

    Google Scholar 

  • Crossley D.A., House G.J., Snider R.M., Snider R.J., Stinner B.R. “The positive interactions in agroecosystems.” In Agricultural Ecosystems-Unifying Concepts, R. Lowrance, B.R. Stinner, G.J. House, eds. New York: John Wiley, 1984; pp. 73–82.

    Google Scholar 

  • Daily G.C. Nature’s Services: Societal Dependence on Natural Ecosystems. Washington, DC: Island Press, 1997.

    Google Scholar 

  • Daniels H.B.A., Bloom J. Vesicular-arbuscular mycorrhizal fungi associated with native tall grass prairie and cultivated winter wheat. Can J Botany 1983; 61: 2140–2146.

    Article  Google Scholar 

  • Davis M.A., Grime J.P., Thompson K. Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 2000; 88: 528–534.

    Article  Google Scholar 

  • De Ruiter P.C., Neutel AM, Moore J.C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 1995; 269: 1256–1260.

    Article  Google Scholar 

  • Ditsch D.C., Alley M.M. Nonleguminous cover crop management for residual N recovery and subsequent crop yields. J Fert Issues 1991; 8: 6–13.

    Google Scholar 

  • Dodd J.C. The role of arbuscular mycorrhizal fungi in agro-and natural ecosystems. Outlook Agr 2000; 29: 55–62.

    Article  Google Scholar 

  • Doersch R.E., Buhler D.D. Controlling Weeds in Conservation Tillage Corn Production. Ext Pub 3425, University of Wisconsin-Madison, 1989.

    Google Scholar 

  • Douds D.D., Millner P.D. Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agricult Ecosys Environ 1999; 74: 77–93.

    Article  Google Scholar 

  • Dyck E., Liebman M. Crop-weed interference as influenced by a leguminous or synthetic fertilizer nitrogen source. II. Rotation experiments with crimson clover, field corn and lambsquarters. Agricult Ecosys Environ 1995; 56: 109–120.

    Article  Google Scholar 

  • Eason W.R., Scullion J.R., Scott E.P. Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agricult Ecosys Environ 1999; 73: 245255.

    Google Scholar 

  • Ellstrand N.C., Prentice H.C., Hancock J.F. Gene flow and introgression from domestic plants into their wild relatives. Annu Rev Ecol Syst 1999; 30: 539–564.

    Article  Google Scholar 

  • Feldmann F., Boyle C. Weed-mediated stability of arbuscular mycorrhizal effectiveness in maize monocultures. J Appl Botany 1999; 73: 1–5.

    Google Scholar 

  • Fernholz C. Sustainable Management Practices for the Nineties. Madison, MN: A Frame Press, 1992.

    Google Scholar 

  • Fitter A.J., Graves J.D., Watkins N.K., Robinson D., Scrimgeour C. Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 1998; 12: 406–412.

    Article  Google Scholar 

  • Francis R., Read D.J. The contributions of mycorrhizal fungi to the determination of plant community structure. Plant Soil 1994; 159: 11–25.

    Google Scholar 

  • Francis R., Read D.J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Botany 1995; 73 (Suppl. 1): 1301–1309.

    Google Scholar 

  • Fry G.L.A. “The role of field margins in the landscape.” In Field Margins: Integrating Agriculture and Conservation, N. Boatman, ed. BCPC Monograph No. 58, United Kingdom: BCPC, 1994; pp. 31–46.

    Google Scholar 

  • Grime J.P., Mackey J.M.L., Hillier S.H., Read D.J. Floristic diversity in a model system using experimental microcosms. Nature 1987; 328: 420–422.

    Article  Google Scholar 

  • Hartnett D.C., Wilson G.W.T. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 1999; 80: 1187–1195.

    Article  Google Scholar 

  • Helgason T., Daniell T.J., Husband R., Fitter A.H., Young J.P.Y. Ploughing up the wood-wide web? Nature 1999; 394: 431.

    Article  Google Scholar 

  • Herre E.A., Knowlton N., Mueller U.G., Rehner S.A. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evolut 1999; 14: 49–53.

    Article  Google Scholar 

  • Holzner W. “Concepts, categories and characteristics of weeds.” In Biology and Ecology of Weeds, W. Holzner, N. Numata, eds. The Hague: Dr. W. Junk Publishers, 1982; pp. 3–20.

    Chapter  Google Scholar 

  • Hutchings M.J., Wijesinghe D.K. Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol Evolut 1999; 12: 390–394.

    Article  Google Scholar 

  • Jackson W., Piper J. The necessary marriage between ecology and agriculture. Ecology 1989; 70:1591–1593. Jervis M.A., Kidd N.A., Fitton M.G., Huddleston T., Dawah H.A. Flower visiting by hymenopteran parisitoids. J Nat Hist 1993; 27: 67–105.

    Article  Google Scholar 

  • Johannes R.J. The case for data-less marine resource management: examples from tropical nearshore finfisheries. Trends Ecol Evol 1998; 13: 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Johnson N.C. Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 1993; 3:749–757. Johnson N.C., Copeland P.J., Crookston R.K., Pfleger F.L. Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron J 1992; 84: 387–390.

    Article  Google Scholar 

  • Johnson N.C., Grahan J.H., Smith F.A. Functioning of mycorrhizal associations along the mutualismparasitism continuum. New Phytol 1997; 135: 575–585.

    Article  Google Scholar 

  • Jordan N. “Agroecological restoration: sustaining production with biodiversity.” In The Farm as a Natural Habitat, D. Jackson, L. Jackson, eds. Covelo, CA: Island Press, 2002; pp. 155–186.

    Google Scholar 

  • Jordan N., Becker R., Gunsolus J., White S., Damme S. Knowledge networks: an avenue to ecological management of invasive weeds. Weed Sci 2002; 51: 271–277.

    Article  Google Scholar 

  • Jordan N., White S., Gunsolus J., Becker R., Damme S. “Learning groups developing collaborative learning methods for diversified, site-specific weed management: a case study from Minnesota, USA.” In Cow Up a Tree: Knowing and Learning for Change in Agriculture, M. Cerf, D. Gibbon, B. Hubert, R. Ison, J. Jiggins, M. Paine, J. Proost, N. Röling, eds. Paris: INRA, 2000; pp. 85–95.

    Google Scholar 

  • Jordan N.R., Zhang J., Huerd S. Arbuscular-mycorrhizal fungi: potential roles in weed management. Weed Res 2000; 40: 397–410.

    Article  Google Scholar 

  • Jordan N., Becker R., Gunsolus J., White S., Damme S. Knowledge networks: an avenue to ecological management of weeds. Weed Sci 51: 271–277.

    Google Scholar 

  • Kabir Z., Koide R.T. The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agricult Ecosys Environ 2000; 78: 167–174.

    Article  Google Scholar 

  • Kapoor P., Ramakrishnan P.S. Studies on crop-legume behaviour in pure and mixed stands. Agro-Ecosys 1975; 2: 61–74.

    Article  CAS  Google Scholar 

  • Kinkel L.L. Microbial population dynamics on plant surfaces. Annu Rev Phytopathol 1997; 35:327–347. Klironomos J.N., McCune J., Hart M., Neville J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 2000; 3: 137–141.

    Google Scholar 

  • Krebs J.R., Wilson J.D., Bradbury R.B., Siriwardena G.M. The second silent spring? Nature 1999; 400: 61 1612.

    Google Scholar 

  • Kurie J.E., Pfleger F.L. Arbuscular mycorrhizal fungus spore populations respond to conversions between low-input and conventional management practices in corn-soybean rotation. Agron J 1994; 86: 467–475.

    Article  Google Scholar 

  • Lal R.E., Regnier E., Eckert D.J., Edward S.W.M., Hammond R. “Expectations of cover crops for sustainable agriculture.” In Cover Crops for Clean Water, W.L. Hargrove, ed. Ankeny, IA: Soil and Water Conservation Society, 1991; pp. 1–11.

    Google Scholar 

  • Laurance W.F. Do edge effects occur over large spatial scales? Trends Ecol Evolut 2000; 15: 134–135.

    Article  Google Scholar 

  • Leigh E.G., Rowell T.E. The evolution of mutualism and other forms of harmony at various levels of biological organization. Ecologie 1995; 26: 131–158.

    Google Scholar 

  • Letourneau D.K. “Conservation biology: lessons for conserving natural enemies.” In Conservation Biological Control, P. Barbosa, ed. San Diego,CA: Academic Press, 1998; pp. 9–38.

    Chapter  Google Scholar 

  • Liebman M., Dyck E. Crop rotation and intercropping strategies for weed Management. Ecol Appl 1993; 3: 92–122.

    Article  Google Scholar 

  • Liebman M., Mohler C.L., Stayer C.S. Ecological Management of Agricultural Weeds. Cambridge, UK: Cambridge University Press, 2001.

    Book  Google Scholar 

  • Lobry de Bruyn L.A.L. Ants as bioindicators of soil function in rural environments. Agricult Ecosys Environ 1999; 74: 425–441.

    Article  Google Scholar 

  • Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M., Bazzaz F.A. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 2000; 10: 689–710.

    Article  Google Scholar 

  • Martensson A.M., Rydbergi Vestberg G.M. Potential to improve transfer of N in intercropped systems by optimising host-endophyte combinations. Plant Soil 1998; 205: 57–66.

    CAS  Google Scholar 

  • Matson P.A., Parton W.J., Power A.G., Swift M.J. Agricultural intensification and ecosystem properties. Science 1997; 277: 504–509.

    Article  PubMed  CAS  Google Scholar 

  • Miller R.M., Jastrow J.D. “The role of mycorrhizal fungi in soil conservation.” In Mycorrhizae in Sustainable Agriculture, G.J. Bethlenfalvay, R Linderman, eds. ASA Special Publication No. 54, Madison, WI: American Society of Agronomy, 1992; pp. 29–44.

    Google Scholar 

  • Moreby S.J., Aebischer N.J., Southway S.E., Sotherton N.W. A comparison of the flora and arthropod fauna of organically and conventionally grown winter wheat in southern England. Ann Appl Biol 1994; 125: 13–27

    Article  Google Scholar 

  • Naeem S.J., Knops M.H., Tilman D., Howe K.M., Kennedy T., Gale S. Plant diversity increases resistance to invasion in the absence of covaring extrinsic factors. Oikos 2000; 91: 97–108.

    Article  Google Scholar 

  • Neher D.A., Barbercheck M.E. “Diversity and function of soil mesofauna.” In Biodiversity in Agroecosystems, W.W. Collins, C.O. Qualset, eds. Boca Raton, FL: CRC Press, 1998; pp. 27–47.

    Google Scholar 

  • Nentwig W., Frank T., Lethmayer C. “Sown weed strips: artificial ecological compensation areas as an important tool in conservation biological control.” In Conservation Biological Control,P. Barbosa, ed.

    Google Scholar 

  • New York, NY: Academic Press, 1998; pp. 133–154.

    Google Scholar 

  • Newsham K.K., Fitter A.H., Watkinson A.R. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evolut 1995b; 10: 407–411.

    Article  CAS  Google Scholar 

  • Nordell E. A few long furrows on horsedrawn tillage. Small Farmers ’ J; 1993: 17: 17–23.

    Google Scholar 

  • Norris R.F., Kogan M. Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci 2000; 48: 94–158.

    Article  CAS  Google Scholar 

  • Pankow W., Boller T., Wiemken A. The significance of mycorrhizas for protective ecosystems. Experientia 1991; 47: 391–394.

    Article  Google Scholar 

  • Patriquin D.G. “Biological husbandry and the ”nitrogen problem.“ In The Role of Microorganisms in a Sustainable Agriculture. Selected papers from The Second International Conference on Biol. Agric., University of London, Wye College, Wye, Kent, UK. J.M. Lopez-Real, R.D. Hodges, eds. Berkamsted,: A.B. Academic, 1986; pp. 81–103.

    Google Scholar 

  • Patriquin D.G., Hill N., Baines D., Bishop M., Allan G. Observations on a mixed farm during the transition to biological husbandry. Biol Agric Hortic 1986; 4: 69.

    Article  Google Scholar 

  • Pellet D., Sieverding. E. “Host preferential multiplication of fungal species of the endogonaceae in the field, demonstrated with weeds.” In Physiological and Genetical Aspects of Mycorrhizae. V. GianinazziPearson, S. Gianinazzi, eds. Paris: INRA, 1986; pp. 555–557.

    Google Scholar 

  • Perry D.A. Self-organizing systems across scales. Trends Ecol Evolut 1995; 10: 241–244.

    Article  CAS  Google Scholar 

  • Perry D.A. A moveable feast: the evolution of resource sharing in plant-fungus communities. Trends Ecol Evolut 1998; 13: 432–434.

    Article  CAS  Google Scholar 

  • Perry D.A., Amaranthus M.A., Borchers J.G., Borchers S.L., Brainerd R.E. Bootstrapping in ecosystems. Bioscience 1989; 39: 230–237.

    Article  Google Scholar 

  • Perry D.A., Borchers J.G., Borchers S.L., Amaranthus M.P. Species migrations and ecosystem stability during climate change: the belowground connection. Consery Biol 1990; 4: 266–274.

    Article  Google Scholar 

  • Pickett C.H., Bugg R.L. (eds.) Enhancing Biological Control: Habitat Management to Promote Natural Enemies of Agricultural Pests. Berkeley, CA: University of California Press, 1998.

    Google Scholar 

  • Pimentel D., McLaughlin L., Zepp A., Lakitan B., Kraus T., Kleinman P., Vancini F., Roach W.J., Graap E., Keeton W.S. Environmental and economic effects of reducing pesticide use: a substantial reduction in pesticides might increase food costs only slightly. Bioscience 1991; 41: 402–409.

    Article  Google Scholar 

  • Pokarzhevskii A.D., Krivolutskii D.A. Problems of estimating and maintaining biodiversity of soil biota in natural and agroecosystems:a case study of chernozem soil. Agricult Ecosys Environ 1997; 62: 127–133.

    Article  Google Scholar 

  • Pretty J.N. Regenerating Agriculture: Policies and Practice for Sustainability and Self-reliance. London, UK: Earthscan, 1995.

    Google Scholar 

  • Rabatin S.C., Stinner B.R. The significance of vesicular-arbuscular mycorrhizal fungal-soil macroinvertebrate interactions in agroecosystems. Agricult Ecosys Environ 1989; 27: 195–204.

    Article  Google Scholar 

  • Radosevich S., Holt J., Ghersa C. Weed Ecology—Implications for Management. New York: John Wiley and Sons, 1997.

    Google Scholar 

  • Ramakrishnan P.S. Shifting Agriculture and Sustainable Development: An Interdisciplinary Study From Northeastern India. UNESCO-MAB Series, Paris, Parthenon, Carnforth, 1992.

    Google Scholar 

  • Rejmanek M. “What attributes make some species more invasive?” In Biological Invasions: A Global Perspective, J.A. Darke, H.A. Mooney, F. di Castri, R.H. Groves, F.J. Kruger, M. Rejmanek, M. Williamson, eds. Chichester, UK: John Wiley and Sons, 1989; pp. 369–388.

    Google Scholar 

  • Rejon A, Garcia-Romera I, Ocampo J.A., Bethlenfalvay G.J. Mycorrhizal fungi influence competition in a wheat-ryegrass association treated with the herbicide diclofop. Appl Soil Ecol 1997; 7: 51–57.

    Article  Google Scholar 

  • Risser P. The status of the science examining ecotones. Bioscience 1995; 45: 318–325.

    Article  Google Scholar 

  • Roming D.E., Garlynd M.J., Harris R.F. Farmer-Based Assessment of Soil Quality: A Soil Health Scorecard. SSSA Special Publication 49. Madison, WI: Soil Science Society of America, 1996.

    Google Scholar 

  • Rosemeyer M.E., Gliessman S.R. “Modifying traditional and high-input agroecosystems for optimization of microbial symbioses: a case study of dry beans in Costa Rica.” In Biotic Diversity in Agroecosystems, M.G. Paoletti, D. Pimentel, eds. Amsterdam: Elsevier, 1992; pp. 61–70.

    Chapter  Google Scholar 

  • Saikkonen K., Faeth S.H., Helander M., Sullivan T.J. Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 1998; 29: 319–343.

    Article  Google Scholar 

  • Schlult P.A., Miller R.M., Jastrow J.D., Rivetta C.V., Bever J.D. Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high-and low-nutrient prairies. Am J Bot 2001; 88: 1950–1656.

    Google Scholar 

  • Scullion J., Eason W.R., Scott E.P. The effectivity of AMF from high-input conventional and organic grassland and grass-arable rotations. Plant Soil 1998; 204: 243–254.

    Article  CAS  Google Scholar 

  • Shaver C.P. “Knowledge, science and practice in ecological weed management: farmer-extensionistscientist interactions.” In Ecological Management of Agricultural Weeds, M. Liebman, C.L. Mohler, C.S. Stayer, eds. Cambridge, UK: Cambridge University Press, 2001; pp. 99–138.

    Google Scholar 

  • Shea K., NCEAS Working Group on Population Management. Management of populations in conservation, harvesting and control. Trends Ecol Evolut 1998; 13: 371–375.

    Article  Google Scholar 

  • Sheley R.L., Svejcar T.J., Maxwell B.D. A theoretical framework for developing successional weed management strategies on rangeland. Weed Technol 1996; 10: 766–773.

    Google Scholar 

  • Shipley P.R., Meisinger J.J., Decker A.M. Conserving residual corn fertilizer nitrogen with winter covercrops. Agron J 1992; 84: 869–876.

    Article  CAS  Google Scholar 

  • Sieverding E. Vesicular-arbuscular Mycorrhizal Management in Tropical Agroecosystems. Deutsche Gesellschaft fur Technische Zusammenarbeit, Eschborn, Federal Republic of Germany, 1991.

    Google Scholar 

  • Simberloff D. Eradication—preventing invasions from getting off the ground. WSSA Abstracts 2001; 41: 137.

    Google Scholar 

  • Smith W.E., Read D.J. Mycorrhizal Symbiosis. 2nd ed. San Diego, CA: Academic Press, 1997.

    Google Scholar 

  • Swamy P.S., Ramakrishnan P.S. Ecological implications of traditional weeding regimes under slash and burn agriculture (jhum) in northeastern India. Weed Res 1988; 28: 127–136.

    Article  Google Scholar 

  • Swanton C.J., Clements D.R., Derksen D.A. Weed succession under conservation tillage: a hierarchical framework for research and management. Weed Technol 1993; 7: 286–297.

    Google Scholar 

  • Swift M.J. “Biological management of soil fertility as a component of sustainable agriculture: perspectives and prospects with particular reference to tropical regions.” In Soil Ecology in Sustainable Agricultural Systems, L. Brussard, R. Ferrera-Cerrato, eds. Boca Raton, FL: CRC Press, 1997; pp. 91–112.

    Google Scholar 

  • Swift M.J., Anderson J.M. “Biodiversity and ecosystem function in agricultural systems.” In Biodiversity and Ecosystem Function, E.D. Schultz, H.A. Mooney, eds. Berlin, Germany: Springer-Verlag, 1993; pp. 15–41.

    Google Scholar 

  • Swift M.J., Vandermeer J., Ramakrishnan P.S., Anderson J.M., Ong C.K., Hawkins B.A. `Biodiversity and agroecosystem function.“ In Functional Roles of Biodiversity-A Global Perspective, H.A. Mooney, J.H. Cushman, E. Medina, O.E. Sala, E.-D. Schultz, eds. New York: John Wiley and Sons, Inc., 1996; pp. 261–294.

    Google Scholar 

  • Thomas M.B., Wratten S.D., Sotherton N.W. Creation of “island” habitats in farmland to manipulate populations of beneficial arthropods: predator densities and species composition. J Appl Ecol 1992; 29: 524–531.

    Article  Google Scholar 

  • Thompson D. Thompson On-Farm Research. Greenbelt, MD: Wallace Institute, 1991.

    Google Scholar 

  • Tilman D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 1997; 78: 81–92.

    Article  Google Scholar 

  • Van der Heijden M.G.A., Boller T., Weimken A., Sanders I.R. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 1998a; 79: 2082–2091.

    Article  Google Scholar 

  • Van der Heijden M.G.A., Klironomos J.N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., Wiemken A., Sanders I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998; 396: 69–72.

    Article  CAS  Google Scholar 

  • Vandermeer J. The ecological basis of alternative agriculture. Annu Rev Ecol Syst 1995; 26:201–224.

    Google Scholar 

  • Vatovec C.M. A Weed Survey of the Farmers in the Sustainable Farming Association of Minnesota, Unpublished, 2001.

    Google Scholar 

  • Wardle D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 1992; 67: 321–358.

    Article  Google Scholar 

  • Wardle D.A. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv Ecol Res 1995; 26: 105–184.

    Article  Google Scholar 

  • Watkinson A.R. The role of the soil community in plant population dynamics. Trends Ecol Evolut 1998; 13: 171–177.

    Article  CAS  Google Scholar 

  • Whitson T.D. (ed.) Weeds of the West. 5th ed. Jackson, WY: Pioneer of Jackson Hole, 1996.

    Google Scholar 

  • Wilkinson D.M. The evolutionary ecology of mycorrhizal networks. Oikos 1998; 82:407–410.

    Google Scholar 

  • Wilson D.S. Biological communities as functionally organized units. Ecology 1997; 78: 2018–2024.

    Article  Google Scholar 

  • Woodmansee R. “Comparative nutrient cycles of natural and agricultural ecosystems: a step toward principles.” In Agricultural Ecosystems Unifying Concepts, R. Lowrance, B.R. Stinner, G.J. House, eds. New York, NY: John Wiley, 1984; pp. 145–156.

    Google Scholar 

  • Zavaleta E.S., Hobbs R.J., Mooney H.A. Viewing invasive species removal in a whole-ecosystem context. Trends Ecol Evolut 2001; 16: 454–459.

    Article  Google Scholar 

  • Zobel M., Moora M., Haukioja E. Plant coexistence in the interactive environment: arbuscular mycorrhiza should not be out of mind. Oikos 1997; 78: 202–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jordan, N., Vatovec, C. (2004). Agroecological Benefits from Weeds. In: Inderjit (eds) Weed Biology and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0552-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0552-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6493-6

  • Online ISBN: 978-94-017-0552-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics