Skip to main content

Improvement of Allelopathy in Crops for Weed Management

Possibilities, Breeding Strategies and Tools

  • Chapter
Weed Biology and Management

Abstract

Weeds are a major concern in all agricultural systems around the world. In contrast to the progress observed with respect to disease resistance, few attempts have been made to breed crops to be competitive against weeds. This is partly due to the success of herbicides as an effective solution against weeds. The apparent complex nature of competitive ability in crops and the widespread impression that competitive ability is negatively correlated with yield is another reason weed suppressive crops have not been selected for. However, recent research with rice shows that it is possible to increase competitive ability without affecting yielding ability (Jones et al., 1997; Olofsdotter et al., 1999). By increasing our understanding of plant competitive ability, we may potentially improve a crop’s competitive ability, the key to successful breeding of weed-fighting cultivars (Mortimer et al., 1999). Theoretically, enhanced crop production, independent of weed growth, can be obtained in three different ways: (i) growing plants that will yield well in spite of weed infestations (weed tolerant crops or cultivars), (ii) growing plants that suppress the surrounding flora (weed-suppressing crops or cultivars) (Lemerle et al., 2001) or (iii) both strategies used at the same time. For long-term weed reduction, greater benefits exist with the later strategy of selecting for weed suppression and thereby increasing competitive ability. Increased crop competitive ability, will suppress weed impair their regenerative capacity, thus decreasing weed abundance in the field over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen S.B., Torp A.M. “QTL mapping in crop plants.” In MolecularTtechniques in Crop Improvement, S. M. Jain, D. S. Brar, B. S. Ahluwalia, eds. The Netherlands: Kluwer Academic Publishers, 2001.

    Google Scholar 

  • Anonymous. Impact of varietal improvements in West African crop ecologies. West Africa Rice Research Brief 1999; pp. 1–2.

    Google Scholar 

  • Barnes J.P., Putnam A.R. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci 1986; 34: 384–390.

    Google Scholar 

  • Barnes J.P., Putnam A.R. Role of benzoxazinones in allelopathy by rye (Secale cereale L:). J Chem Ecol 1987; 13: 889–906.

    Article  CAS  Google Scholar 

  • Barnes J.P., Putnam A.R., Burke B.A. “Allelopathic activity of rye (Secale cereale L.).” In The Science of Allelopathy, A. R. Putnam, C. S. Tang, eds. New York, NY: John Wiley and Sons, 1986; pp. 271 - 286.

    Google Scholar 

  • Caton B.P., Mortimer A.M., Foin T.C., Hill J.E., Gibson K.D., Fischer A.J. Weed morphology effects on competitiveness for light in direct-seeded rice. November 22-27, Bangkok, Asian-Pacific Weed Science Society. Proceedings of the 17th Asian-Pacific Weed Science Society conference, 1999; pp. 116–120.

    Google Scholar 

  • Courtois B., Olofsdotter M. “Incorporating the allelopathy trait in upland rice breeding programs.” In Allelopathy in Rice, M. Olofsdotter, ed. Los Banos, Philippines: International Rice Research Institute, 1998; pp. 57–68.

    Google Scholar 

  • Daly A.K., Day C.P. Candidate gene case-control association studies: advantages and potential pitfalls. British J Clin Pharmac 2001; 52: 489–499.

    Article  CAS  Google Scholar 

  • Dilday R.H., Yan W.G., Moldenhauer K.A., Gravois K.A. “Allelopathic activity in rice for controlling major aquatic weeds.” In Allelopathy in Rice, M. Olofsdotter, ed. Los Banos, Philippines: International Rice Research Institute, 1998; pp. 7. 26.

    Google Scholar 

  • Dingkuhn M., Jones M.J., Johnson D.E., Fofana B., Sow A. “Oryza sativa and O. glaberrima gene pools for high-yielding, weed competitive rice plant types.“ In Breeding Strategies for Rainfed Lowland Rice in Drought-Prone Environments, S. Fukai, M. Cooper, J. Salisbury, eds. ACIAR Proceedings. 1997; pp. 144–155.

    Google Scholar 

  • Ebana K., Yan W., Dilday R.H., Namai H., Okuno K. Analysis of QTL associated with the allelopathic effect of rice using water- soluble extracts. Breed Sci 2001; 51: 47–51.

    Article  CAS  Google Scholar 

  • Escobar C.A., Niemeyer H.M. Potential of hydroxamic acids in breeding for aphid resistance in wheat. Acta Agric Scand Sec B Soil Plant Sci 1993; 43: 163–167.

    Article  CAS  Google Scholar 

  • Fay P.K., Duke W.B. An assessment of allelopathic potential in Avena germplasm. Weed Sci 1997; 25: 224228

    Google Scholar 

  • Fukai E., Nishio T., Nasrallah M.E. Molecular genetic analysis of the candidate gene for MOD, a locus required for self- incompatibility in Brassica rapa. Mole Gene Genom 2001; 265: 519–525.

    Article  CAS  Google Scholar 

  • Grace J.B. “On the relationship between plant traits and competitive ability.” In Perspectives on Plant Competition, J. B. Grace, D. Tilman, eds. New York, NY: Academic Press, 1990; pp. 51–65.

    Google Scholar 

  • Haas H., Streibig J.C. “Changing patterns of weed distribution as a result of herbicide use and other agronomic factors.” In Herbicide Resistance in Plants, J. Gressel, H. LeBaron, eds. New York, NY: John Wiley and Sons, 1982; pp. 57 - 79.

    Google Scholar 

  • Hassan S.M., Aidy I.R., Bastawisi A.O., Draz A.E. “Weed management using allelopathic rice varieties in Egypt.” In Allelopathy in Rice, M. Olofsdotter, ed. Los Banos, Philippines: International Rice Research Institute, 1998; pp. 27 - 38.

    Google Scholar 

  • Inderjit. Soil: environmental effects on allelochemical activity. Agron J 2001; 93: 79–84.

    CAS  Google Scholar 

  • Inderjit, Keating K.I. Allelopathy: principles, procedures, processes and promises for biological control. Adv Agron 1999; 67: 141 - 231.

    Article  CAS  Google Scholar 

  • Jensen L.B., Courtois B., Shen L., Li Z., Olofsdotter M., Mauleon R.P. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J 2001a; 93: 21–26.

    Article  CAS  Google Scholar 

  • Jensen L.B., Olofsdotter M., Courtois B. Genetic control of allelopathy in rice. Penang Malaysia, August 7–11. Second Asian-Pacific conference on chemical ecology-current scenario and trends in chemical ecology, 2001b.

    Google Scholar 

  • Jensen L.B., Olofsdotter M., Courtois B. “Genetic control of allelopathy in rice (Oryza sativa L.).” In Rice Allelopathy, K. U. Kim, D. H. Shin, eds. Kyungpook National University, Taegu, Korea, 2000; pp. 2740.

    Google Scholar 

  • Jones M.J., Dingkulm M., Aluko G.K., Semon M. Interspecific Oryza sativa L. x O. glaberrima Steud. progenies in upland rice improvement. Euphytica 1997; 92: 237–246.

    Article  Google Scholar 

  • Jordan N.R., Jannink J.L. Assessing the practical importance of weed evolution: a research agenda. Weed Res 1997; 37: 237 - 246.

    Article  Google Scholar 

  • Kaneko T., Zhang W.S., Ito K., Takeda K. QTL mapping for enzyme activity and thermostability of beta-amylase in barley (Hordeum vulgare L.). Breed Sci 2001; 51: 99–105.

    Article  CAS  Google Scholar 

  • Kim K.U., Shin D.H. “Rice allelopathy research in Korea.” In Allelopathy in Rice, M. Olofsdotter, ed. Los Banos, Philippines: International Rice Research Institute, 1998; pp. 39–44.

    Google Scholar 

  • Kirk G.J.D., George T., Courtois B., Senadhira D. Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland ecosystems. Field Crops Res 1998; 56: 73–92.

    Article  Google Scholar 

  • Kluge M., Grambow H.J., Sicker D. (2R)-2-beta-D-glucopyranosyloxy-4,7-dimethoxy-2H-1,4-benzoxazin3(4H)-one from Triticum aestivum. Phytochemistry 1997; 44: 639–641.

    Article  CAS  Google Scholar 

  • Kropff M.J., Lotz L.A.P., Weaver S.E., Bos H.J., Wallinga J., Migo T. A two parameter model for prediction of crop loss by weed competition from early observations of relative leaf area of the weeds. Ann Appl Biol 1995; 126: 329–346.

    Article  Google Scholar 

  • Kudsk P., Olsen J., Mathiassen S.K., Brandt K., Christensen L.P. Allelopathy in barley. 18. Danske Plantev emskoference, 43–45. Danmarks Jordbrugsforskning. DJF Rapport, 1998.

    Google Scholar 

  • Lemerle D., Gill G.S., Murphy C.E., Walker S.R., Cousens R., Mokhtari S., Peltzer S.J., Coleman R., Luckett D.J. Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust J Agric Res 2001; 52: 527–548.

    Article  Google Scholar 

  • Liu D.L., Lovett J.V. Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley. J Chem Ecol 1993b; 19: 2217–2230.

    Article  CAS  Google Scholar 

  • Liu D.L., Lovett J V. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J Chem Ecol 1993a; 19: 2231–2244.

    CAS  Google Scholar 

  • Lockerman R.H., Putnam A.R. Evaluation of allelopathic cucumbers (Cucumis sativus) as an aid for weed control. Weed Science 1979; 27: 54–57.

    Google Scholar 

  • Lovett J.V., Hoult A.H.C., Christen O. Biologically active secondary metabolites of barley. IV. Hordenine production by different barley lines. J Chem Ecol 1994; 20: 1945–1954.

    Article  CAS  Google Scholar 

  • Mauleon R.P. RFLP mapping of genes conferring resistance to blast in the rice cultivars IAC 165 and CO 39 across environments. University of the Philippines, Los Bathos, Laguna, Philippines, 1995.

    Google Scholar 

  • Moolsri S., Kow-in P., Chaitep W., Mortimer A.M. Rice-weed competitiveness. 1B, 721–725. November 22–27, Bangkok, Asian-Pacific Weed Science Society. Proceedings of the 17th Asian-Pacific Weed Science Society conference, 1999.

    Google Scholar 

  • Mortimer A.M., Caton B.P., Hill J.E. On ecological issues in the development of sustainable weed management. 1 A, 45–50. Bangkok, Thailand, Asian Pacific Weed Science Society. Proceedings of the 17th Asian-Pacific Weed Science Society Conference. Weeds and Environmental Impact, 1999.

    Google Scholar 

  • Navarez D., Olofsdotter M. Relay seeding technique for screening allelopathic rice (Oryza sativa) . Proceedings of the second International Weed Control Congress, Department of Weed Control and Pesticide Ecology, Copenhagen, Denmark, 1996; pp. 1285–1290.

    Google Scholar 

  • Olofsdotter M., Navarez D. Allelopathic rice in Echinochloa crus-galli control. Proceedings of the second International Weed Control Congress, Department of Weed Control and Pesticide Ecology, Copenhagen, Denmark, 1996; pp. 1175 - 1182.

    Google Scholar 

  • Olofsdotter M., Navarez D., Rebulanan M. Rice allelopathy-where are we and how far can we get? Brighton, BCPC. Brighton Crop Protection Conference, 1997; pp. 99–104.

    Google Scholar 

  • Olofsdotter M., Navarez D., Rebulanan M., Streibig J.C. Weed-suppressing rice cultivars-does allelopathy play a role. Weed Res 1999; 39: 441–454.

    Article  Google Scholar 

  • Overland L. The role of allelopathic substances in the smother crop barley. Am J Bot 1966; 53:423–432. Perez F.J. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. fatua. Phytochemistry 1990; 29: 773–776

    Article  Google Scholar 

  • Perez F.J., Ormeno-Nunez J. Weed growth interference from temperate cereals: the effect of hydroxamicacid-exuding rye (Secale cereale L.) cultivars. Weed Res 1993; 33: 115–119.

    Article  CAS  Google Scholar 

  • Pheng S., Adkins S.W., Jahn G.C., Olofsdotter M., Nesbitt H.J. Towards the production of allelopathic rice crops in Cambodia. Beijing, China. May 28- June 2. Proceedings of the 18th Asian-Pacific Weed Science Society conference, 2001; pp. 187–197.

    Google Scholar 

  • Putnam A.R., DeFrank J. Use of phytotoxic plant residues for selective weed control. Crop Prot 1983; 2: 173–181.

    Article  Google Scholar 

  • Putnam A.R., Duke W.B. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science 1974; 185: 370 - 371.

    Article  PubMed  CAS  Google Scholar 

  • Ranasinghe L.L., Crabtree G.D. Plant characteristics associated with rice (Oryza sativa L.) - barnyardsgrass (Echinochloa crus-galli L. Beauv.) competition. November 22-27, Bangkok, Asian-Pacific Weed Science Society. Proceedings of the 17th Asian-Pacific Weed Science Society conference, 1999; pp. 99–104.

    Google Scholar 

  • Rimando A.M., Dayan F.E., Czarnota M.A., Weston L.A., Duke S.O. A new photosystem II electron transfer inhibitor from Sorghum bicolor. J Nat Prod 1998; 61: 927–930.

    Article  PubMed  CAS  Google Scholar 

  • Rimando A.M., Olofsdotter M., Dayan F.E., Duke S.O. Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron J 2001; 93: 16–20

    Article  CAS  Google Scholar 

  • Rousset M., Brabant P., Kota R.S., Dubcovsky J., Dvorak J. Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica 2001; 119: 81–87.

    Article  CAS  Google Scholar 

  • Shilling D.G., Liebl R.A., Worsham A.D. “Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: the suppression of certain broadleaved weeds and the isolation and identification of phytotoxins.” In The Chemistry of Allelopathy: Biochemical Interactions Among Plants, A. C. Thompson, ed. Washington DC: American Chemical Society, 1987; pp. 243–272.

    Google Scholar 

  • Wu H., Pratley J., Lemerle D., Haig T. Crop cultivars with allelopathic capability. Weed Research 1999; 39: 171 - 180.

    Article  Google Scholar 

  • Wu H., Pratley J., Lemerle D., Haig T. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust J Agric Res 2000a; 51: 937–944.

    Article  Google Scholar 

  • Wu H., Pratley J., Lemerle D., Haig T. Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust J Agric Res 2000b; 51: 259 - 266.

    Article  Google Scholar 

  • Wu H., Pratley J., Lemerle D., Haig T. Allelopathy in wheat (Triticum aestivum). Ann Appl Biol 2001; 139: 1–9.

    Article  CAS  Google Scholar 

  • Yoshida H., Tsumuki H., Kanehisa K., Corcuera L.J. Release of gramme from the surface of barley leaves. Phytochemistry 1993; 34: 1011–1013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Olofsdotter, M., Andersen, S.B. (2004). Improvement of Allelopathy in Crops for Weed Management. In: Inderjit (eds) Weed Biology and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0552-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0552-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6493-6

  • Online ISBN: 978-94-017-0552-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics