Skip to main content

Radiobiological Effects of Highly Charged Ions

Their relevance for tumor therapy and radioprotection in space

  • Chapter
The Physics of Multiply and Highly Charged Ions

Abstract

The radiobiological effects of highly-charged-ion beams are of interest for tumortherapy and for radioprotection in space. In tumor therapy, high-energy protons and carbon ions exhibit an inverse dose profile, i.e. an increase of energy deposition with penetration depth. This allows a greater tumor dose for protons and carbon ions than for photons. In addition, for the heavier carbon ions, this increase in dose is potentiated by a greater relative biological efficiency (RBE). On the other hand, the greater RBE of particles is the concern of space-radioprotection because the radiation burden of the cosmic galactic radiation consists of heavy charged particles from protons to iron ions. In this chapter, the physical and biological basis of particle radiotherapy and its present status will be presented. For space radioprotection, the particle spectrum will be given and the risk of cancer induction and long-term genetic mutation will be discussed. In contrast to the cell inactivation problem for tumor therapy, where physics-based models have been developed, the genetic changes are more complex in their mechanisms and only rough estimations can be given for the time being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LBNL Report, Modelling Human Risk: Cell and Molecular Biology in Context,LBNL Report 40278, (1997)

    Google Scholar 

  2. G. Kraft, RBE and its Interpretation, Strahlenther. Onkol. 175, Suppl 2, 44–47 (1999)

    MATH  Google Scholar 

  3. G. Kraft and M. Krämer, Linear Energy Transfer and Track Structure, Advances in Radiat. Biology, 17, 1–52 (1993)

    Google Scholar 

  4. C.O. Reinhold, D.R. Schultz, U. Bechthold, G. Kraft, S. Hagmann, and H. Schmidt-Böcking, Ternary ridge of ejected electrons from fast ion-atom collisions, Physical Review A 58 (3), 2611–14 (1998)

    Article  ADS  Google Scholar 

  5. M. Krämer and G. Kraft, Calculations of Heavy Ion Track Structure, Radiat. Environm. Biophys. 33, 91–109 (1994)

    Article  Google Scholar 

  6. G. Kraft, M. Scholz, and U. Bechthold, Tumor Therapy and Track Structure, Radiat.Environm.Biophys. 38, 229–237 (1999)

    Article  Google Scholar 

  7. W. Bragg and R. Kleemann, On the a-Particles of Radium and their Loss of Range in Passing Through Various Atoms and Molecules, Phil. Mag. 10, 318–340 (1905)

    Google Scholar 

  8. R.R. Wilson, Radiological Use of Fast Protons, Radiology 47, 487–491 (1946)

    Google Scholar 

  9. U. Weber, Volumenkonforme Bestrahlung mit Kohlenstoffionen,PhD-Thesis, Universität Gh Kassel, (1996) Radiobiological Effects of Highly Charged Ions 193

    Google Scholar 

  10. H. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlung durch Materie, Ann. Phys. (Leipzig) 5, 325–400 (1930)

    ADS  MATH  Google Scholar 

  11. F. Bloch, Bremsvermögen von Atomen mit mehreren Elektronen, Z. Phys. 81, 363–376 (1933)

    Article  ADS  MATH  Google Scholar 

  12. F. Bloch, Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie, Ann. Phys. (Leipzig) 5, 285–321 (1933)

    ADS  Google Scholar 

  13. H.W. Barkas, Nuclear Research Emulsions, Vol. I, Academic Press New York and London, (1963)

    Google Scholar 

  14. G. Molière, Theorie der Streuung schneller geladener Teilchen II, Mehrfach- und Vielfachstreuung, Z. Naturforschung 3a, 78–97 (1948)

    ADS  Google Scholar 

  15. B. Gottschalk, A.M. Koehler, R.J. Schneider, J.M. Sisterson, and M.S. Wagner, Multiple Coulomb Scattering of 160 MeV Protons, Nucl. Instr. and Meth. B74, 467–490 (1992)

    ADS  Google Scholar 

  16. J. Hüfner, Heavy Fragments Produced in Proton-Nucleus and Nucleus-Nucleus Collisions at Relativistic Energies, Phys. Reports 125, 129–185 (1985)

    Article  ADS  Google Scholar 

  17. E.M. Friedländer and H.H. Heckmann, Relativistic Heavy-Ion Collisions Experiment, in: Treatise on Heavy-Ion Science, Vol. 4, ed. D.A. Bromly, 304–365 (1985)

    Google Scholar 

  18. W. Enghardt, W.D. Fromm, H. Geissel, H. Keller, G. Kraft, A. Magel, P. Manfraß, G. Münzenberg, F. Nickel, J. Pawelke, D. Schardt, C. Scheidenberger, and M. Sobiella, Positron Emission Tomography for Dose Localization and Beam Monitoring in Light Ion Tumor Therapy, Proc. Int. Conf. on Biological Applications of Relativistic Nuclei, Clermont-Ferrand, France, 30 Oct. (1992)

    Google Scholar 

  19. W. Enghardt, J. Debus, T. Haberer, B.G. Hasch, R. Hinz, O. Jäkel, M. Krämer, K. Lauckner, and J. Pawelke, The Application of PET to Quality Assurance of Heavy-Ion Tumor Therapy, Strahlenther. Onkol. 175, Suppl. II, 33–36 (1999)

    Google Scholar 

  20. A. Wambersie, The Future of High-Let Radiation in Cancer Therapy, in: Eulima Workshop on the Potential Value of Light Ion Beam Therapy, ed. P. Chauvel and A. Wambersie, Publication No. EUR 12165, Commission of the European Community, Brussels, (1989)

    Google Scholar 

  21. G. Kraft, Radiobiology of Heavy Charged Particles, in: Advances in Hadrontherapy, eds. U. Amaldi, B. Larsson, and Y. Lemoigne; Excerpta Medica, Int. Congr. Series 1144, Elsevier, 385–404 (1997)

    Google Scholar 

  22. G. Kraft, Radiobiological effects of very heavy ions: inactivation, induction of chromosome aberrations and strand breaks, Nucl. Sci. Appl. 3, 1–28 (1987)

    Google Scholar 

  23. G. Kraft, W. Kraft-Weyrather, G. Taucher-Scholz, and M. Scholz, What Kind of Radiobiology should be done at a Hadron Therapy Center, Advances in Hadrontherapy, Proceedings of the International Week on Hadrontherapy, European Scientific Institute, Archamps, France, 20–24 November 1995 and of the Second International Symposium on Hadron-therapy, PSI and CERN, Switzerland, 9–13 September (1996)

    Google Scholar 

  24. W.K. Weyrather, S. Ritter, M. Scholz, and G. Kraft, RBE for Carbon Track Segment Irradiation in Cell Lines of Differing Repair Capacity, Int. J. Radiat. Biol 11, 1357–1364 (1999)

    Google Scholar 

  25. W.T. Chu, B.A. Ludewigt, and T.R. Renner, Instrumentation for Treatment of Cancer Using Proton and Light-Ion Beams, Review of Scientific Instruments, Accelerator & Fusion Research Division, LBL-33403 ÚC406 Preprint (1993)

    Google Scholar 

  26. O. Jäkel and M. Krämer, Treatment planning for heavy ion irradiation, Physica Medica Vol XIV /1; 53–1998, (1998)

    Google Scholar 

  27. E.A. Blakely, C.A. Tobias, F.Q.H. Ngo, and S.B. Curtis, Physical and Cellular Radiobiological Properties of Heavy Ions in Relation to Cancer Therapy Application, in: Biological and Medical Research with Accelerated Heavy Ions at the Bevalac, eds.: M.D. Pirncello, C.A. Tobias, LBL 11220, 73–88 (1980)

    Google Scholar 

  28. T. Kanai, Y. Furusawa, K. Fukutsu, H. Itsukaichi, K. Eguchi-Kasai, and H. Ohara, Irradiation of Mixed Beam and Design of Spread-out Bragg Peak for Heavy-Ion Radiotherapy, Radiat. Res. 147 (1), 78–85 (1997)

    Article  Google Scholar 

  29. T. Kanai, et al. Biophysical Characteristics of HIMAC Clinical Irradiation System for Heavy-Ion Radiation Therapy, Int. J. Radiat. Oncol. Biol. Phys. 44 (1), 2001–210, (1999)

    Article  ADS  Google Scholar 

  30. H. Tsujii, Preliminary Results of Phase I/II Carbon Ion Therapy at NIRS, Int. Part. Therapy Meeting and XXIV. PTCOG Meeting, April 24–26, Detroit Michigan (1996)

    Google Scholar 

  31. M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, and G. Kraft, Computation of Cell Survival in Heavy-Ion Beams for Therapy. The Model and its Approximation, Radiat.Environ.Biophys. 36, 59–66 (1997)

    Article  Google Scholar 

  32. M. Scholz and G. Kraft, Calculation of Heavy Ion Inactivation Probabilities Based on Track Structure, X-ray sensitivity and target size, Radiat. Prot. Dosimetry, 52, Nos 1–4, 29–33 (1994)

    Google Scholar 

  33. J. Debus, T. Haberer, D. Schulz-Ertner, O. Jäkel, F. Wenz, W. Enghardt, W. Schlegel, G. Kraft, and M. Wannenmacher, Fractionated Carbon Ion Irradiation of Skull Base Tumors at GSL First Clinical Results and Future Perspectives, Strahlenther. Onkol. 176 (5), 211–216 (2000)

    Article  Google Scholar 

  34. H. Blattmann, G. Munkel, E. Pedroni, T. Böhringer, A. Coray, S. Lin, A. Lomax, and B. Kaser-Hotz Conformal proton radiotherapy with a dynamic application technique at PSI, Progress in: Radio-Oncology V, ed. H.D. Kogelnik, Monduzzi Editore, Bologna, 347–352 (1995)

    Google Scholar 

  35. G. Kraft, W. Becher, K. Blasche, D. Böhne, B. Fischer, G. Gademann, H. Geissel, Th. Haberer, J. Klabunde, W. K.-Weyrather, B. Langenbeck, G. Münzenberg, S. Ritter, W. Rösch, D. Schardt, H. Stelzer, and Th. Schwab, The Heavy Ion Project at GSI, Nucl. Tracks Radiat. Meas. 19, 911–914, (Int. J. Radiat. Appl. Instrum. Part D) (1991)

    Google Scholar 

  36. Th. Haberer, W. Becher, D. Schardt, and G. Kraft, Magnetic scanning system for heavy ion therapy, Nucl. Instr. and Meth. in Phys. Res.A 330, 296–305 (1993)

    Google Scholar 

  37. H. Brand, H.G. Essel, H. Herdel, J. Hoffmann, N. Kurz, W. Ott, and M. Richter, Therapy: Slow Control System, Data Analysis and on-line Monitoring, GSI Report, 146–189 (1998)

    Google Scholar 

  38. L.J. Verhey, Comparison of achievable Dose Distributions Using Gamma Knife, Protons and IMRT, in: it Intensity-Modulated Radiation Therapy, ed. E.S. Sternik, Advanced Med. Pub., 127–142 (1997)

    Google Scholar 

  39. W. Schlegel, O. Pastyr, T. Bortfeld, G. Gademann, M. Menke, and W. Maier-Borst, Stereotactically Guided Fractionated Radiotherapy: Technical Aspects, Radiother. Oncol. 29, 197–204 (1993)

    Article  Google Scholar 

  40. K.M. Langen and T.L. Jones, Organ Motion and its Management, Int.J.Radiation Oncology Biol. Phys. 50, 265–278 (2001)

    Article  Google Scholar 

  41. J.R. Alonso, Synchrotrons: the American Experience, in: Hadrontherapy in Oncology, eds.: U. Amaldi, B. Larsson, Excerpta Medica Intercongress Series 1077, Elsevier, 266–281 (1994)

    Google Scholar 

  42. T. Renner, M. Nymann, and R.P. Singh, Control Systems for Ion Beam Radiotherapy Facilities, in: Ion Beams in Tumor Therapy, ed. U. Linz, Chapman & Hall, 156–265 (1995)

    Google Scholar 

  43. V. Wieszczycka, Preliminary Project of a Polish Dedicated Proton Therapy Facility, Ph.D Thesis, Warsaw, 194–198 (1999)

    Google Scholar 

  44. G. Kraft, Tumor Therapy with Heavy Charged Ions, Progr. Part. Nucl. Phys. 45, 473–544 (2000)

    Article  ADS  Google Scholar 

  45. E. Pedroni, Beam Delivery in Hadrontherapy in Oncology, eds. U. Amaldi, B. Larsson, Excerpta Medica, 434–452 (1994)

    Google Scholar 

  46. Eulima: Cancer Treatment with Light Ions in Europe, Final Report, Geneva (1991)

    Google Scholar 

  47. P. Heeg, G.H. Hartmann, O. Jäkel, C. Karger, and G. Kraft, Quality Assurance at the Heavy-Ion Therapy Facility at GSI, Strahlenther. Oncol. 175, 36–39, (1998)

    Article  Google Scholar 

  48. C. Brusasco, A Detector System for the Verification of Three-Dimensional Dose Distributions in the Tumor Therapy with Heavy Ions, PhD Thesis Kassel (1999)

    Google Scholar 

  49. U. Amaldi, The National Centre for Oncological Hadrontherapy at Mirasole, INFN, Frascati (1997)

    Google Scholar 

  50. Sisterson J.: Particles, A Newsletter for those Interested in Proton Light Ion and Heavy Charged Particle Radiotherapy, 28 /2001, 13–14 (2001)

    Google Scholar 

  51. Majima H.J. and Fujitaka K. (eds), Exploring Future Research Strategies in Space Radiation Science,Proceedings of the 2nd International Space Workshop Feb. 16–18, 2000, Chiba NIRS (2000)

    Google Scholar 

  52. National Research Council: Radiation Hazard to Crews of Interplanetary Missions - Biological Issues and Research Strategies, National Academy Press, Washington (1996)

    Google Scholar 

  53. J.W. Wilson, et al., Transport Methods and Interactions for Space Radiations,NASA Publication 1257 (1991)

    Google Scholar 

  54. J. Kiefer, Heavy ion effects on cells: chromosomal aberrations, mutations and neoplastic transformation, Radiat. Environm. Biophys. 31, 279–288 (1992)

    Article  Google Scholar 

  55. S. Ritter, E. Nasonova, E. Gudowska-Nowak, M. Scholz, and G. Kraft, High-LET-induced chromosome aberrations in V79 cells analysed in first and second post-irradiation metaphases, Int. J. Radiat. Biol. 76, 149–161 (2000)

    Article  Google Scholar 

  56. M.A. Kadhim, D.A. Macdonald, D.T. Goodhead, S.A. Lorimore, S.A. Marsden, and E.G. Wright, Transmission of chromosomal instability after plutonium alpha particle irradiation, Nature 355, 738–740 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kraft, G. (2003). Radiobiological Effects of Highly Charged Ions. In: Currell, F.J. (eds) The Physics of Multiply and Highly Charged Ions. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0542-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0542-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6402-8

  • Online ISBN: 978-94-017-0542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics