Skip to main content

Inertial Forces: The Special Relativistic Assessment

  • Chapter

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 135))

Abstract

Rotating observers and circular test particle orbits in Minkowski spacetime are used to illustrate the transport laws and derivative operators needed to define the various “inertial forces” one can introduce using the natural relative observer approach to describing spacetime. Various centripetal accelerations (often called centrifugal forces when multiplied by the mass) are evaluated and compared with the familiar value υ 2 / γ of nonrelativistic physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gödel K., An example of a new type of cosmological solutions to Einstein’s field equations of gravitation, Rev. Mod. Phys. 21, 447 (1949); reprinted with commentary By G.F.R. Ellis in Gen. Rel. Grav. 32, 1399 (2000)

    Google Scholar 

  2. Kerr R.P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ehrenfest P., Gleichförmige Rotation starrer Körper und Relativitiitstheorie, Phys. Zeits. 10, 918 (1909)

    MATH  Google Scholar 

  4. Rizzi G. and Ruggiero M.L., Space geometry of rotating platforms: an operational approach, Found. Phys. 32, 1525 (2002); gr-qc/0207104

    Google Scholar 

  5. Grøn G., in Relativity in Rotating Frames, eds. Rizzi G. and Ruggiero M.L., in the series “Fundamental Theories of Physics”, ed. Van der Merwe A., Kluwer Academic Publishers, Dordrecht, (2003)

    Google Scholar 

  6. Landau L.D. and Lifshitz E.M., The Classical Theory of Fields, Second edition, Permagon Press, New York, 1975; first edition in English 1951; first Russian edition 1941

    Google Scholar 

  7. Misner C.W., Thorne K.S. and Wheeler J.A., Gravitation, Freeman, San Francisco, 1973

    Google Scholar 

  8. Bini D., Carini P. and Jantzen R.T., The inertial forces/test particle motion game, in Proceedings of the Eighth Marcel Grossmann Meeting on General Relativity (1997) ed. T. Piran, World Scientific, Singapore, 1999, 376; e-print gr-qc/9710051

    Google Scholar 

  9. Jantzen R.T., Carini P. and Bini D., The many faces of gravitoelectromagnetism, Ann. Phys. (N.Y.) 215, 1 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bini D., Carini P. and Jantzen R.T., The intrinsic derivative and centrifugal forces in general relativity: I. Theoretical foundations, Int. J. Mod. Phys. D6, 1 (1997); e-print gr-qc/0106013

    Google Scholar 

  11. Bini D., Carini P. and Jantzen R.T., The intrinsic derivative and centrifugal forces in general relativity: II. applications to circular orbits in some familiar stationary axially symmetric spacetimes, Int. J. Mod. Phys. D6, 143 (1997); e-print gr-qc/0106014

    Google Scholar 

  12. Abramowicz M.A., Centrifugal forces: a few surprises, Mon. Not. R. Ast. Soc. 245, 733 (1990)

    MathSciNet  ADS  MATH  Google Scholar 

  13. Rindler W. and Perlick V., Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession, Gen. Rel. Grav. 22, 1067 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Taylor E.F. and Wheeler J.A., Spacetime Physics, First Edition, W.H. Freeman, San Francisco, 1966: exercise 103 (dropped from Second Edition, 1992)

    Google Scholar 

  15. Bini D., de Felice F. and Jantzen R.T., Relative Frenet-Serret frames and Fermi-Walker transport, Class. Quantum Grav. 16, 2105 (1999)

    Article  ADS  MATH  Google Scholar 

  16. Bini D., Jantzen R.T. and Merloni A., Geometric interpretation of the Frenet-Serret frame description of circular orbits in stationary axisymmetric spacetimes, Class. Quantum Grav. 16, 1333 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Synge J.L., Timelike helices in flat spacetime, Proc. Roy. Irish Acad. 65, 27 (1967)

    Google Scholar 

  18. Jantzen R.T., Circular holonomy, clock effects and gravitoelectromagnetism: still going around in circles after all these years..., in Proceedings of the Ninth ICRA Network Workshop on Fermi and Astrophysics, eds. V. Gurzadyan and R. Ruffini, World Scientific, Singapore, 2003; e-print gr-qc/0202085

    Google Scholar 

  19. Pirani, F.A.E., On the physical significance of the Riemann tensor, Acta Phys. Polon. 15, 389 (1956)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bini, D., Jantzen, R.T. (2004). Inertial Forces: The Special Relativistic Assessment. In: Rizzi, G., Ruggiero, M.L. (eds) Relativity in Rotating Frames. Fundamental Theories of Physics, vol 135. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0528-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0528-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6514-8

  • Online ISBN: 978-94-017-0528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics