Skip to main content

Genetic Variation in the Relationship between Photosynthetic CO2 Assimilation Rate and Stomatal Conductance to Water Loss

  • Chapter
Progress in Photosynthesis Research

Abstract

Jones (1) has discussed two main reasons for attempting to manipulate stornata by breeding. The first was to maximise productivity and hence yield, by increasing rates of assimilation of CO2. An increase in stomatal conductance would be expected to achieve this in C3 species by increasing the partial pressure of CO2 within the leaf, p., which would be useful in conditions where water supply is not limiting. The second was to improve drought tolerance. A decreased stomatal conductance can aid in this direction, but at some expense to yield potential (yield in well-watered conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, H.G. (1986) in Stomatal function (Zeiger, E.F., Farquhar, G.D. and Cowan, I.R., eds.). Stanford Univ. Press, Stanford, California (in press).

    Google Scholar 

  2. Körner, C., Scheel, J. A. and Bauer, H. (1979) Photosynthetica 13, 45–82

    Google Scholar 

  3. Wong, S.C., Cowan, I.R. and Farquhar, G.D. (1979) Nature 282, 424–426

    Article  Google Scholar 

  4. Farquhar, G.D. and Wong, S.C. (1984) Aust. J. Plant Physiol. 11, 191–210

    Article  Google Scholar 

  5. Cowan, I.R., Raven, J.A., Hartung, W., and Farquhar, G.D. (1979) Aust. J. Plant Physiol. 9, 489–498

    Article  Google Scholar 

  6. Pearcy, R.W., Osteryoung, K. and Randall, D. (1982) Oecologia 55, 333–341

    Article  Google Scholar 

  7. Yoshie, F. (1986) Oecologia 68, 370–374

    Article  Google Scholar 

  8. Laisk, A., Oja, V. and Kull, K. (1980) J. exp. Bot. 31, 49–58

    Article  Google Scholar 

  9. Omasa, K., Hashimoto, Y., Kramer, P.J., Strain, B.R., Aiga, I. and Kondo, J. (1985) Plant Physiol. 79, 153–158

    Article  Google Scholar 

  10. Raschke, K. (1982) in Plant Growth Substances (Wareing, P.F., ed.), pp.581–590, Academic

    Google Scholar 

  11. Schulze, E.-D. (1986) Ann. Rev. Plant Physiol. 37, 247–274

    Article  Google Scholar 

  12. Bunce, J.A. (1986) Can. J. Bot. (in press)

    Google Scholar 

  13. Sharp, R.E. and Boyer, J.S. 1986. Plant Physiol. (in press)

    Google Scholar 

  14. Ball, M.C. and Farquhar, G.D. (1984) Plant Physiol. 74, 1–6

    Article  Google Scholar 

  15. Delieu, T. and Walker, D.A. (1981) New Phytol. 89, 165–175.

    Article  Google Scholar 

  16. Farquhar, G.D., O’Leary, M.H. and Berry, J.A. (1982) Aust. J. Plant Physiol. 9, 121–37

    Article  Google Scholar 

  17. Farquhar, G.D., Ball, M.C., von Caemmerer, S. and Roksandic, Z. (1982) Oecolgia 52, 121–124

    Article  Google Scholar 

  18. Evans, J.R., Sharkey, T.D., Berry, J.A. and Farquhar, G.D. (1986) Aust. J. Plant Physiol. 13, 281–292

    Article  Google Scholar 

  19. Pearman, G.I., and Hyson, P. (in press). J. Atmos. Chem.

    Google Scholar 

  20. Dongmann, G., Nurnberg, H., Förstel, H., and Wagener, K. (1974) Rad. and Environm. Biophys. 11, 41–52.

    Article  Google Scholar 

  21. Tans, P.P., Francey, R.J. and Pearman, G.I. (1986) IN Baseline 1983–1984. (Francey, R.J., ed), Dept. Science and Technology. Aust.

    Google Scholar 

  22. Bradford, K.J., Sharkey, T.D. and Farquhar, G.D. (1983) Plant Physiol. 72, 245–250

    Article  Google Scholar 

  23. Ehleringer, J.R., Schulze, E.-D., Ziegler, H., Lange, O.L., Farquhar, G.D. and Cowan, I.R. (1985) Science 227, 1479–1481.

    Article  Google Scholar 

  24. Farquhar, G.D. and Richards, R.A.(1984) Aust. J. Plant Physiol. 11, 539–552

    Article  Google Scholar 

  25. Hubick, K.T., Farquhar, G.D. and Shorter, R. Aust. J. Plant Physiol. (in press)

    Google Scholar 

  26. Farquhar, G.D., Hubick, K.T., Condon, A.G. and Richards, R.A. (1986) in Applications of Stable Isotope Ratios to Ecological Research (Rundel, P. and Ehleringer, J., eds.), Springer-Verlag (in press)

    Google Scholar 

  27. Condon, A.G., Richards, R.A. and Farquhar, G.D. (1986) Submitted to Crop Science

    Google Scholar 

  28. Morison, J.I.L. and Gifford, R.M. (1983) Plant Physiol. 71, 789–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Farquhar, G.D., Hubick, K.T., Terashima, I., Condon, A.G., Richards, R.A. (1987). Genetic Variation in the Relationship between Photosynthetic CO2 Assimilation Rate and Stomatal Conductance to Water Loss. In: Biggins, J. (eds) Progress in Photosynthesis Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0519-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0519-6_46

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-0521-9

  • Online ISBN: 978-94-017-0519-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics