Advertisement

Photoinhibitory Stress Causes Accumulation of a 31 Kilodalton Protein in the Chloroplast Light-harvesting Apparatus

  • Donald B. Hayden
  • Neil R. Baker
  • Michael P. Percival

Abstract

Photodamage to the photosynthetic apparatus of chloroplasts occurs when plants are exposed to high light levels under environmental conditions which inhibit assimilation of carbon dioxide. Such damage results in a decrease in the capacity for photosynthetic electron transport and photophosphorylation. Concomitant with these changes is a large decrease in chlorophyll a fluorescence emission from photosystem II (PS II), which is routinely used as a monitor of photoinhibition. (1–6) It has been suggested that the fluorescence decrease, and the reduced capacity for photochemistry, may be due to an increase in the radiationless dissipation of trapped light energy by PS II antennae chlorophylls or reaction centres. (4,6) On exposure of maize plants to a photoinhibitory photon flux density of 1500 μmol m-2 s-1 at 5°C for 6h, a 31 kD protein accumulated in the thylakoid membranes of the mesophyll chloroplasts. This protein was found to be a component of the light-harvesting complex (LHC II) associated with PS II. Evidence is provided which suggests that the protein is a precursor form of LHC II proteins which has not been processed prior to insertion into the thylakoid membrane and that its appearance is correlated with a dysfunction of LHC II which would account for a reduction in photochemical efficiency of PS II.

Keywords

Thylakoid Membrane Photochemical Efficiency Excitation Energy Transfer Fluorescence Rise Chloroplast Biogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ogren, E. & Oquist, G. (1984) Physiol. Plant 62, 187–192.CrossRefGoogle Scholar
  2. 2.
    Bradbury, M. & Baker, N.R. (1986) Plant Cell Environ., in press.Google Scholar
  3. 3.
    Fork, D.C., Oquist, G. & Powles, S.B. (1981) Carnegie Inst. Washington Year Book 80, 52–57.Google Scholar
  4. 4.
    Powles, S.B. & Bjorkman, O. (1982) Planta 156, 97–107.CrossRefGoogle Scholar
  5. 5.
    Smillie, R.M. & Hetherington, S.E. (1983) Plant Physiol. 72, 1043–1050.CrossRefGoogle Scholar
  6. 6.
    Ogren, E. & Oquist, G. (1984) Physiol. Plant 62, 193–200.CrossRefGoogle Scholar
  7. 7.
    Hayden, D.B. & Hopkins, W.G. (1976) Can. J. Bot. 54, 1684–1689.CrossRefGoogle Scholar
  8. 8.
    Steinback, K.E., Mullet, J.E. & Arntzen, C.J. (1982) In: Methods of Chloroplast Molecular Biology (eds. M. Edelman et al.,) pp. 863–872. Elsevier Biomedical Press, Amsterdam.Google Scholar
  9. 9.
    Laemmli, U.K. (1970) Nature 227, 680–685.CrossRefGoogle Scholar
  10. 10.
    Montano, X. & Lane, D.P. (1984) J. Virol. 51, 760–767.Google Scholar
  11. 11.
    Bennett, J. (1981) Eur. J. Biochem. 118, 61–70.CrossRefGoogle Scholar
  12. 12.
    Percival, M.P., Webster, A.N. & Baker, N.R. (1984) Biochim. Biophys. Acta 767, 582–589.CrossRefGoogle Scholar
  13. 13.
    Melis, A., & Homann, P.H. (1975) Photochem. Photobiol. 21, 431–437.CrossRefGoogle Scholar
  14. 14.
    Hodges, M. & Barber, J. (1983) FEBS Lett. 160, 177–181.CrossRefGoogle Scholar
  15. 15.
    Thornber, J.P., Markwell, J.P. & Reinman, S. (1979) Photochem. Photobiol. 29, 1205–1216.CrossRefGoogle Scholar
  16. 16.
    Ellis, R.J. (1984) In: Chloroplast Biogenesis (ed. R.J. Ellis) pp. 1–9. Cambridge University Press, Cambridge.Google Scholar
  17. 17.
    Cumming, A.C. & Bennett, J. (1981) Eur. J. Biochem. 118, 71–80.CrossRefGoogle Scholar
  18. 18.
    Schmidt, G.W., Bartlett, S.G., Grossman, A.R., Cashmere, A.R. & Chua, N.-H. (1981) J. Cell Biol. 91, 468–478.CrossRefGoogle Scholar
  19. 19.
    Cline, K., Werner-Washburne, M., Lubben, T.H. & Keegstra, K. (1985) J. Biol. Chem. 260, 3691–3696.Google Scholar
  20. 20.
    Butler, W.L. & Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–88.CrossRefGoogle Scholar
  21. 21.
    Van Grondelle, R. & Duysens, L.N.M. (1980) Plant Physiol. 65, 751–754.CrossRefGoogle Scholar
  22. 22.
    Haehnel, W., Nairn, J.A., Reisberg, P. & Sauer, K. (1982) Biochim. Biophys. Acta 396, 72–88.Google Scholar
  23. 23.
    Melis, A. & Homann, P.H. (1978) Arch. Biochem. Biophys. 190, 523–530.CrossRefGoogle Scholar
  24. 24.
    Melis, A. & Homann, P.H. (1982) Biochim. Biophys. Acta 682, 1–10.CrossRefGoogle Scholar
  25. 25.
    Butler, W.L. & Strasser, R.J. (1977) Proc. Natl. Acad. Sci. USA 74, 3382–3385.CrossRefGoogle Scholar
  26. 26.
    Telfer, A., Hodges, M. & Barber, J. (1983) Biochim. Biophys. Acta 682, 1–10.Google Scholar
  27. 27.
    Bennett, J., Jenkins, G.I., Cuming, A.C., Williams, R.S., Hartley, M.R. (1984) In: Chloroplast Biogenesis (ed. R.J. Ellis) pp. 167–192. Cambridge University Press, Cambridge.Google Scholar
  28. 28.
    Chitnis, P.R., Harel, E., Kohorn, D.B., Tobin, E. & Thornber, J.P. (1986) J. Cell. Biol., in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1987

Authors and Affiliations

  • Donald B. Hayden
    • 1
  • Neil R. Baker
    • 2
  • Michael P. Percival
    • 2
  1. 1.Department of Plant SciencesThe University of Western OntarioLondonCanada
  2. 2.Department of BiologyUniversity of EssexEssexUK

Personalised recommendations