Skip to main content

Skin cancer induction by UV radiation: molecular UV targets and quantitative risk models

  • Chapter
  • 300 Accesses

Part of the book series: Cancer Prevention — Cancer Causes ((CPCC,volume 3))

Abstract

Cancer research is making great strides in the fundamental understanding of how a normal cell can turn malignant, i.e., proliferate and spread uncontrollably. The relevant changes (carcinogenic “events”) that lead to cancer can be detected or even quantified in terms of frequency of occurrence. In animal experiments on UV-induced skin cancers, the relation between such early carcinogenic events and wavelength, exposure and lapse of time can be studied in great detail. Epidemiology revealed the importance of solar (UV) exposure in the etiology of human skin cancer (see Chapters 5, 6) and early carcinogenic events can, in principle, also be detected in humans. Quantitative risk models can be refined and improved by integrating these experimental and epidemiological data. Such refined and detailed quantitative models are, however, in their infancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brash DE, Rudolph JA, Simon JA, et al. (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinomas. Proc Natl Acad Sci USA 88: 10124–10128.

    Article  PubMed  CAS  Google Scholar 

  2. Ziegler AD, Leffel DJ, Kunala S, et al. (1993) Mutation hotspots due to sunlight in the p53 gene of skin cancers. Proc Natl Acad Sci USA 90: 4216–4220.

    Article  PubMed  CAS  Google Scholar 

  3. Kress S, Sutter SC, Strickland PT, Mukhtar H, Schweizer J, Schwarz M (1992) Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52: 6400–6403.

    PubMed  CAS  Google Scholar 

  4. Kanjilal S, Pierceall WF, Cummings KK, Kripke ML, Ananthaswamy HN (1993) High frequency of p53 mutations in ultraviolet radiation-induced skin tumors: evidence for strand bias and tumor heterogeneity. Cancer Res 53: 2961–2964.

    PubMed  CAS  Google Scholar 

  5. Van Kranen HJ, de Gruijl FR, de Vries A, et al. (1995) Frequent p53 alterations but low incidences of ras mutations in UV-B induced skin tumors of hairless mice. Carcinogenesis 16: 1141–1147.

    Article  PubMed  Google Scholar 

  6. Dumaz N, Van Kranen HJ, de Vries A, et al. (1997) The role of UVB light in skin carcinomas through the analysis of p53 mutations in squamous cell carcinomas of hairless mice. Carcinogenesis 18: 897–904.

    Article  PubMed  CAS  Google Scholar 

  7. Berg RJW, van Kranen HJ, Rebel HG, et al. (1997) Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc Natl Acad Sci. USA 93: 274–278.

    Article  Google Scholar 

  8. Jonason AS, Kunala S, Price GJ, et al. (1996) Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 93: 14025–14029.

    Article  PubMed  CAS  Google Scholar 

  9. Ren ZP, Ponten F, Nister M, Ponten J (1996) Two distinct p53 immunohistochemical patterns in human squamous cell skin cancer, precursors and normal epidermis. Int J Cancer 69: 174–179.

    Article  PubMed  CAS  Google Scholar 

  10. Rebel H, Mosnier LO, Berg RJ, et al. (2001) Early p53-positive foci as indicators of tumor risk in ultraviolet-exposed hairless mice: kinetics of induction, effects of DNA repair deficiency, and p53 heterozygozity. Cancer Res 61: 977–983.

    PubMed  CAS  Google Scholar 

  11. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. (1994) A cell cycle regulator potentially involved in geneisis of many tumor types. Science 264: 436–440.

    Article  PubMed  CAS  Google Scholar 

  12. Ruas M., Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378: F115 - F177.

    PubMed  CAS  Google Scholar 

  13. Pollock PM, Yu F, Qui L, Parsons PG, Hayward NK (1995) Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines. Oncogene 11: 663–668.

    PubMed  CAS  Google Scholar 

  14. Funk JO, Schiller PI, Barrett MT, Wong DJ, Kind P, Sander CA (1998) p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma. J Cutan Pathol 25: 291–296.

    Google Scholar 

  15. Flores JF, Walker GJ, Glendening JM, et al. (1996) Loss of the p16INK4a and p15INK4b genes as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res 56: 5023–5032.

    PubMed  CAS  Google Scholar 

  16. Dahmane N, Lee J, Robins P, Heller P, Ruiz i Alteba, A (1997) Activation of the transcription factor Gli1 and the hedgehog signalling pathway in skin tumors. Nature 389: 876–881.

    Article  PubMed  CAS  Google Scholar 

  17. Fan H, Oro AE, Scott MP, Khavari PA (1997) Induction of basal cell carinoma features in transgenic human keratinocytes expressing Sonic Hedgehog. Nat Med 3: 788–792.

    Article  PubMed  CAS  Google Scholar 

  18. Fan H, Khavari PA (1999) Sonic hedgehog opposes epithelial cell cycle arrest. J Cell Biol 147: 71–76.

    Article  PubMed  CAS  Google Scholar 

  19. Gialini MR, Stahle-Bäckdahl M, Leffell DJ, et al. (1996) The role of the human homologue of Drosophila Patched in sporadic basal cell carcinomas. Nature Gen 14: 78–81.

    Article  Google Scholar 

  20. Aszterbaum M, Epstein J, Oro A, et al. (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Med. 5: 1285–1291.

    Article  PubMed  CAS  Google Scholar 

  21. Pierceall WE, Goldberg LH, Tainsky MA, Mukhopadhyay T, Ananthaswamy HN (1991) Ras gene mutation and amplification in human nonmelanoma skin cancers. Mol Carcinog 4: 196–202.

    CAS  Google Scholar 

  22. Cambell C, Quinn AG, Rees JL (1993) Codon 12 Harvey-ras mutations are rare events in non-melanoma human skin cancer. Br J Dermatol 128: 111–114.

    Article  Google Scholar 

  23. Van’t Veer LJ, Burgering BMT, Versteeg R, et al. (1989) N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol Cell Biol 9: 3114–3116.

    Google Scholar 

  24. Van Elsas A, Zerp SF, van der Flier S, et al. (1996) Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Path 143: 883–893.

    Google Scholar 

  25. Davies H, Bignell GR, Cox C, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  PubMed  CAS  Google Scholar 

  26. Halaban R, Fan B, Ahn J, Funasaka Y, Gitay-Goren H, Neufeld G (1992) Growth factors, receptor kinases, and protein tyrosine phosphatases in normal and malignant melanocytes. J Immunother 12: 154–161.

    Article  PubMed  CAS  Google Scholar 

  27. Serrano M, Lin WA, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  PubMed  CAS  Google Scholar 

  28. Wittbrodt J, Adam D, Malitschek B, et al. (1989) Novel putative receptor tyrosine kinase encoded by melanoma-inducing Tu locus in Xiphophorus. Nature 341: 415–421.

    Article  PubMed  CAS  Google Scholar 

  29. Kazianis S, Gutbrod H, Nairn RS, et al. (1998) Localization of a CDKN2 gene in linkage group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor. Genes Chromosomes Cancer 22: 210–220.

    Article  PubMed  CAS  Google Scholar 

  30. Chin L, Pomerantz J, Polsky D, et al. (1997) Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 1: 2822–2834.

    Article  Google Scholar 

  31. De Gruijl FR, Sterenborg HJCM, Forbes PD, et al. (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res 53: 53–60.

    PubMed  Google Scholar 

  32. De Gruijl FR, Van der Leun JC (1994) Estimate of the wavelength dependency of ultraviolet carcinogenesis in humans and its relevance to the risk assessment of a stratospheric ozone depletion. Health Phys 67: 314–325.

    Google Scholar 

  33. Freeman SE, Hachan H, Gange RW, Maytum DJ, Sutherland JC, Sutherland BM (1989) Wavelength Dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci USA 86: 5605–5609.

    Article  PubMed  CAS  Google Scholar 

  34. Noonan FP, Recio JA, Takayama H, et al. (2001) Neonatal sunburn and melanoma in mice. Nature 413: 271–272.

    Article  PubMed  CAS  Google Scholar 

  35. Setlow RB, Woodhead AD, Grist E (1989) Animal model for ultraviolet radiation-induced melanoma: platyfish-swortail hybrid. Proc Natl Acad Sci USA 86: 8922–8926.

    Article  PubMed  CAS  Google Scholar 

  36. Ley RD, Applegate LA, Padilla RS, Stuart TD (1989) Ultraviolet radiation-induced malignant melanoma in Monodelphis domestica. Photochem Photiobiol 50: 1–5.

    Article  CAS  Google Scholar 

  37. Robinson ES, Hubbard GB, Colon G, Vandeberg JL (1998) Low-dose ultraviolet exposure early in the development can lead to widespread melanoma in the opossum model. Int J Exp Path 79: 235–244.

    CAS  Google Scholar 

  38. Robinson ES, Hill RH Jr, Kripke ML, Setlow RB (2000) The Monodelphis melanoma model: initial report on large ultraviolet A exposures of suckling young. Photochem Photobiol 71: 743–746.

    Article  PubMed  CAS  Google Scholar 

  39. Ley RD (2001) Dose response for ultraviolet radiation A-induced focal melanocytic hyperplasia and nonmelanoma skin tumors in Monodelphis domestica. Photochem Photobiol 73: 20–23.

    Article  PubMed  CAS  Google Scholar 

  40. Chan J, Robinson ES, Atencio J, et al. (200 1) Characterization of the CDKN2A and ARF genes in UV-induced melanocytic hyperplasias and melanomas of an opossum (Monodelphis domestica). Mol Carcinog 31: 16–26.

    Google Scholar 

  41. De Gruijl FR, Van der Leun JC (1983) Effect of chronic UV exposure on epidermal transmission in mice. Photochem Photobiol 36: 433–441.

    Google Scholar 

  42. De Gruijl, FR, Van der Leun JC (199 1) Development of skin tumors in hairless mice after discontinuation of ultraviolet irradiation. Cancer Res 51: 979–984.

    Google Scholar 

  43. De Gruijl FR, Van der Meer JB, Van der Leun JC (1983) Dose-time dependency of tumor formation by chronic UV exposure, Photochem Photobiol 37: 53–62.

    Article  PubMed  Google Scholar 

  44. Davies RE, Forbes PD (1988) Retinoids and photocarcinogenesis: a review. J Toxicol Cut Ocul Toxicol 7: 241–253.

    Article  CAS  Google Scholar 

  45. De Gruijl FR (1997) Health effects from solar UV radiation. Rad Protect Dosimetry 72: 177–196.

    Article  Google Scholar 

  46. De Gruijl FR, Van der Leun JC (1993) Influence of ozone depletion on the incidence of skin cancer. In: Young AR, Björn LO, Moan J, Nultsch W, eds. Environmental UV Photobiology. New York: Plenum Press, pp. 89–112.

    Google Scholar 

  47. Longstreth JD, De Gruijl FR, Kripke ML, Takizawa Y, Van der Leun JC (1995) Effects of increased solar ultraviolet radiation on human health. Ambio 24: 153–165.

    Google Scholar 

  48. Scotto J, Fears TR (1987) The association of solar ultraviolet and skin melanoma incidence among Caucasians in the Unites States. Cancer Invest 5: 275–283.

    PubMed  CAS  Google Scholar 

  49. Slaper H, Velders GJM, Daniel JS, De Gruijl FR Van der Leun JC (1996) Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements. Nature 384: 256–258.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Gruijl, F.R., Slaper, H. (2004). Skin cancer induction by UV radiation: molecular UV targets and quantitative risk models. In: Hill, D., Elwood, J.M., English, D.R. (eds) Prevention of Skin Cancer. Cancer Prevention — Cancer Causes, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0511-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0511-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6346-5

  • Online ISBN: 978-94-017-0511-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics