Skip to main content

Infinitary Logic in Finite Model Theory

  • Chapter
Logic and Scientific Methods

Part of the book series: Synthese Library ((SYLI,volume 259))

  • 442 Accesses

Abstract

The infinitary logic ℒ ∞ωω consists of all formulas of ℒ∞ω with a finite number of variables. During the past several years, the study of ℒ ∞ωω has occupied a prominent place in finite model theory. We present an overview of results concerning the interaction of ℒ ∞ωω with least fixed-point logic and first-order implicit definability on finite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

    Google Scholar 

  2. S. Abiteboul and V. Vianu. Computing with first-order logic. Journal of Computer and System Sciences, 50(2):309–335, April 1995. Special Issue: Selections from 23rd Annual ACM Symposium on Theory of Computing, New Orleans, LA, USA, 6–8 May 1991.

    Google Scholar 

  3. A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Proc. 6th ACM Symp. on Principles of Programming Languages, pages 110–117, 1979.

    Google Scholar 

  4. J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292–296, 1977.

    Article  Google Scholar 

  5. E. W. Beth. On Padoa’s method in the theory of definition. Indag. Math., 15:330–339, 1953.

    Google Scholar 

  6. A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and System Sciences, 25:99–128, 1982.

    Article  Google Scholar 

  7. C. C. Chang and H. J. Keisler. Model Theory. North Holland, 3rd edition, 1990.

    Google Scholar 

  8. S. A. Cook. An observation of time-storage trade-off. Journal of Computer and System Sciences, 9:308–316, 1974.

    Article  Google Scholar 

  9. A. Dawar. Feasible computation through model theory. PhD thesis, University of Pennsylvania, Philadelphia, 1993.

    Google Scholar 

  10. A. Dawar, L. Hella, and Ph. G. Kolaitis. Implicit definability and infinitary logic in finite model theory. In Proceedings of 22nd International Colloquium on Automata, Languages, and Programming. ICALP 95, pages 624–635, Springer-Verlag, 1995.

    Chapter  Google Scholar 

  11. A. Dawar, S. Lindell, and S. Weinstein. Infinitary logic and inductive definability over finite structures. Information and Computation, 119(2):160–75, June 1995.

    Article  Google Scholar 

  12. R. FaginR. M. Karp. Generalized first-order spectra and polynomial-time recognizable sets. In , editor, Complexity of Computation, SIAM-AMS Proceedings, Vol. 7, pages 43–73, 1974.

    Google Scholar 

  13. R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:89–96, 1975.

    Article  Google Scholar 

  14. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41:50–58, 1976.

    Article  Google Scholar 

  15. Y. V. Glebskii, D. I. Kogan, M. I. Liogonki, and V. A. Talanov. Range and degree of realizability of formulas in the restricted predicate calculus. Cybernetics, 5:142–154, 1969.

    Article  Google Scholar 

  16. Y. Gurevich, M. M. Ricther.. Toward logic tailored for computational complexity. In et al, editor, Computation and Proof Theory, Lecture Notes in Mathematics 1104, pages 175–216, Springer-Verlag, 1984.

    Google Scholar 

  17. Y. Gurevich and S. Shelah. On finite rigid structures. August 1994. Preprint. To appear in the Journal of Symbolic Logic.

    Google Scholar 

  18. L. Hella, Ph. G. Kolaitis, and K. Luosto. How to define a linear order on finite models. In Proc. 9th IEEE Symp. on Logic in Computer Science, pages 40–49, 1994.

    Google Scholar 

  19. N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–104, 1986.

    Article  Google Scholar 

  20. N. Immerman. Upper and lower bounds for first-order expressibility. Journal of Computer and System Sciences, 25:76–98, 1982.

    Article  Google Scholar 

  21. S.C. Kleene. On the forms of the predicates in the theory of constructive ordinals (second paper). American Journal of Mathematics, 77:405–428, 1955.

    Article  Google Scholar 

  22. Ph. G. Kolaitis. Implicit definability on finite structures and unambiguous computations. In Proc. 5th IEEE Symp. on Logic in Computer Science, pages 168–180, 1990.

    Google Scholar 

  23. Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model theory. In Proc. 7th IEEE Symp. on Logic in Computer Science, pages 46–57, 1992.

    Google Scholar 

  24. Ph. G. Kolaitis and M. Y. Vardi. Infinitary logic and 0–1 laws. Information and Computation, 98:258–294, 1992.

    Article  Google Scholar 

  25. E.G.K. López-Escobar. On defining well-orderings. Fundamenta Mathematicae, 59:13–21, 1966.

    Google Scholar 

  26. Y. N. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.

    Google Scholar 

  27. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  28. A. Rubin. Free algebras in von Neumann-Bernays-Gödel set theory and positive elementary induction in reasonable structures. PhD thesis, California Institute of Technology, 1975.

    Google Scholar 

  29. A. Seth. When do fixed point logics capture complexity classes. In Proc. 10th IEEE Symp. on Logic in Computer Science, pages 353–363, 1995.

    Google Scholar 

  30. C. Spector. Inductively defined sets of natural numbers. In Infinitistic Methods, pages 97–102, Pergamon Press, New York, 1961.

    Google Scholar 

  31. A. Stolboushkin. Axiomatizable classes of finite models and definability of linear order. In Proc. 7th IEEE Symp. on Logic in Computer Science, pages 64–70, 1992.

    Google Scholar 

  32. J. D. Ullman. Database and Knowledge-Base Systems, Volumes I and II. Computer Science Press, 1989.

    Google Scholar 

  33. L. Valiant. Relative complexity of checking and evaluating. Information Processing Letters, 5:20–23, 1976.

    Article  Google Scholar 

  34. M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on Theory of Computing, pages 137–146, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kolaitis, P.G. (1997). Infinitary Logic in Finite Model Theory. In: Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J. (eds) Logic and Scientific Methods. Synthese Library, vol 259. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0487-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0487-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4786-1

  • Online ISBN: 978-94-017-0487-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics