Advertisement

Cross Slip Viewed at the Nano- and Micrometer Scale

  • T. Leffers
  • O. B. Pedersen
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 114)

Abstract

The results of recent work on atomic-scale modelling of cross slip of non-jogged and jogged screw dislocations in copper are summarized — with special emphasis on the activation energy for cross slip. The results are compared with observations of the texture transition in brass and with microstructural observations on cyclically deformed copper. The indication is that cross slip plays a governing role in texture formation and in cyclic deformation/fatigue.

Key words

cross slip atomistic modelling texture transition fatigue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Maddin, C.H. Mathewson and W.R. Hibbard, “Unpredicated Cross-Slip in Single Crystals of Alpha Brass”, Metals Transactions, vol. 175, pp. 86–99, 1948.Google Scholar
  2. [2]
    G.J. Ogilvie and W. Boas, “Unpredicated Cross-Slip in Single Crystals of Alpha Brass”, Metals Transactions, vol. 175, pp. 102–104 1948.Google Scholar
  3. [3]
    H. Wolf, “Die Aktivierungsenergie für die Quergleitung aufgespaltener Schraubenversetzungen”, Zeitschriftflir Naturforschung, vol. 15a, pp. 180–193, 1960.Google Scholar
  4. [4]
    A. Seeger, “The Mechanism of Glide and Work Hardening in Face-Centered Cubic and Hexagonal Close-Packed Metals”, in Dislocations and Mechanical Properties of Crystals, New York, John Wiley and Sons, pp. 243–329, 1957.Google Scholar
  5. [5]
    N.F. Mott, “A Theory for the Origin of Fatigue Cracks”, Acta Metallurgica, vol. 6, pp. 195–197, 1958.CrossRefGoogle Scholar
  6. [6]
    R.E. Smallman and D. Green, “The Dependence of Rolling Texture on Stacking Fault Energy”, Acta Metallurgica, vol. 12, pp. 145–154, 1964.CrossRefGoogle Scholar
  7. [7]
    I.L. Dillamore and W.T. Roberts, “Rolling Textures in F.C.C. and B.C.C. Metals”, Acta Metallurgica, vol. 12, pp. 281–293, 1964.CrossRefGoogle Scholar
  8. [8]
    K.W. Jacobsen, J.K. Nerskov and M.J. Puska, “Interatomic Interactions in the Effective-Medium Theory”, Physical Review B, vol. 35, pp. 7423–7442, 1987.CrossRefGoogle Scholar
  9. [9]
    J.B. Gibson, A.N. Goland, M. Milgram and G.H. Vineyard, “Dynamics of Radiation Damage”, Physical Review, vol. 120, pp. 1229–1253, 1960.CrossRefGoogle Scholar
  10. [10]
    H. Jónsson, G. Mills and K.W. Jacobsen, “Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions”, in Classical and Quantum Dynamics in Condensed Phase Simulations, Singapore, World Scientific, pp. 385–404, 1998.CrossRefGoogle Scholar
  11. [11]
    T. Vegge, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Atomistic Simulations of Jog Migration on Extended Screw Dislocations”, Materials Science and Engineering A, vol. 319–321, pp. 119–123, 2001.CrossRefGoogle Scholar
  12. [12]
    T. Rasmussen, K.W. Jacobsen, T. Leffers, O.B. Pedersen, S.G. Srinivasan and H. Jónsson, “Atomistic Determination of Cross-Slip Pathway and Energitics”, Physical Review Letters, vol. 79, pp. 3676–3679,1997.CrossRefGoogle Scholar
  13. [13]
    S. Rao, T.A. Parthasarathy and C. Woodward, “Atomistic Simulation of Cross-Slip Processes in Model FCC Structures”, Philosophical Magazine A, vol. 79, pp. 1167–1192, 1999.CrossRefGoogle Scholar
  14. [14]
    T. Rasmussen, “Comment on ‘Atomistic Simulation of Cross-Slip Processes in Model FCC Structures,’” Philosophical Magazine A, vol. 80, pp. 1291–1292, 2000.CrossRefGoogle Scholar
  15. [15]
    T. Vegge, “Atomistic Simulations of Screw Dislocation Cross Slip in Copper and Nickel”, Materials Science and Engineering A, vol. 309–310, pp. 113–116, 2001.CrossRefGoogle Scholar
  16. [16]
    T. Rasmussen, T. Vegge, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Simulation of Structure and Annihilation of Screw Dislocation Dipoles”,Philosophical Magazine A, vol. 80, pp. 1273–1290, 2000.CrossRefGoogle Scholar
  17. [17]
    T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Determination of the Rate of Cross Slip of Screw Dislocations”, Physical Review Letters, vol. 85, pp. 3866–3869, 2000.CrossRefGoogle Scholar
  18. [18]
    T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Atomistic Simulations of Cross-Slip of Jogged Screw Dislocations in Copper”, Philosophical Magazine Letters, vol. 81, pp. 137–144,2001.CrossRefGoogle Scholar
  19. [19]
    J. Bonneville, B. Escaig and J.L. Martin, “A Study of Cross-Slip Activation Parameters in Pure Copper”, Acta Metallurgica, vol. 36, pp. 1989–2002, 1988.CrossRefGoogle Scholar
  20. [20]
    T. Vegge, O.B. Pedersen, T. Leffers and K.W. Jacobsen, “Atomic-Scale Modeling of the Annihilation of Jogged Screw Dislocation Dipoles”, Materials Research Society Symposia Proceedings, vol. 578, pp. 217–222, 2000.CrossRefGoogle Scholar
  21. [21]
    T. Leffers and O.B. Pedersen, “The Activation Energy for the FCC Rolling Texture Transition and the Activation Energy for Cross Slip”, Rise-R-1308 (EN). Available electronically via http://www.risoe.dk/rispubl/AFM/ris-r-1308.htm
  22. [22]
    W. Püschl, “Models for Dislocation Cross-Slip in Close-Packed Crystal Structures: a Critical Review”, Progress in Materials Science, vol. 47, pp. 415–461, 2002.CrossRefGoogle Scholar
  23. [23]
    T. Leffers and O.B. Pedersen, “The Activation Energy for the FCC Rolling-Texture Transition as Related to the Activation Energy for Cross Slip”, Scripta Metallurgica, vol. 46, pp. 741–746,2002.CrossRefGoogle Scholar
  24. [24]
    T. Leffers and O.B. Pedersen, “Can We Relate the FCC Rolling Texture Transition to Cross Slip?”, Materials Science Forum, vol. 408–412, pp. 365–370, 2002.CrossRefGoogle Scholar
  25. [25]
    O.B. Pedersen and A.T. Winter, “Cyclic Hardening and Slip Localization in Single Slip Oriented Copper Crystals”, Physica status solidi (a)vol.l49, pp. 281–296, 1995.Google Scholar
  26. [26]
    O.B. Pedersen, “A nanotheory of the intense slip localization causing metal fatigue”, Zeitschrift für Metallkunde, vol. 93, pp. 790–798,2002.Google Scholar
  27. [27]
    L.B. Brown,“ A dipole model for the cross-slip of screw dislocations in fee metals”, Philosophical Magazine A, vol.82, pp.1691–1711, 2002.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • T. Leffers
    • 1
  • O. B. Pedersen
    • 1
  1. 1.Materials Research DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations