Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 114))

  • 457 Accesses

Abstract

The results of recent work on atomic-scale modelling of cross slip of non-jogged and jogged screw dislocations in copper are summarized — with special emphasis on the activation energy for cross slip. The results are compared with observations of the texture transition in brass and with microstructural observations on cyclically deformed copper. The indication is that cross slip plays a governing role in texture formation and in cyclic deformation/fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Maddin, C.H. Mathewson and W.R. Hibbard, “Unpredicated Cross-Slip in Single Crystals of Alpha Brass”, Metals Transactions, vol. 175, pp. 86–99, 1948.

    Google Scholar 

  2. G.J. Ogilvie and W. Boas, “Unpredicated Cross-Slip in Single Crystals of Alpha Brass”, Metals Transactions, vol. 175, pp. 102–104 1948.

    Google Scholar 

  3. H. Wolf, “Die Aktivierungsenergie für die Quergleitung aufgespaltener Schraubenversetzungen”, Zeitschriftflir Naturforschung, vol. 15a, pp. 180–193, 1960.

    Google Scholar 

  4. A. Seeger, “The Mechanism of Glide and Work Hardening in Face-Centered Cubic and Hexagonal Close-Packed Metals”, in Dislocations and Mechanical Properties of Crystals, New York, John Wiley and Sons, pp. 243–329, 1957.

    Google Scholar 

  5. N.F. Mott, “A Theory for the Origin of Fatigue Cracks”, Acta Metallurgica, vol. 6, pp. 195–197, 1958.

    Article  CAS  Google Scholar 

  6. R.E. Smallman and D. Green, “The Dependence of Rolling Texture on Stacking Fault Energy”, Acta Metallurgica, vol. 12, pp. 145–154, 1964.

    Article  CAS  Google Scholar 

  7. I.L. Dillamore and W.T. Roberts, “Rolling Textures in F.C.C. and B.C.C. Metals”, Acta Metallurgica, vol. 12, pp. 281–293, 1964.

    Article  CAS  Google Scholar 

  8. K.W. Jacobsen, J.K. Nerskov and M.J. Puska, “Interatomic Interactions in the Effective-Medium Theory”, Physical Review B, vol. 35, pp. 7423–7442, 1987.

    Article  CAS  Google Scholar 

  9. J.B. Gibson, A.N. Goland, M. Milgram and G.H. Vineyard, “Dynamics of Radiation Damage”, Physical Review, vol. 120, pp. 1229–1253, 1960.

    Article  CAS  Google Scholar 

  10. H. Jónsson, G. Mills and K.W. Jacobsen, “Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions”, in Classical and Quantum Dynamics in Condensed Phase Simulations, Singapore, World Scientific, pp. 385–404, 1998.

    Chapter  Google Scholar 

  11. T. Vegge, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Atomistic Simulations of Jog Migration on Extended Screw Dislocations”, Materials Science and Engineering A, vol. 319–321, pp. 119–123, 2001.

    Article  Google Scholar 

  12. T. Rasmussen, K.W. Jacobsen, T. Leffers, O.B. Pedersen, S.G. Srinivasan and H. Jónsson, “Atomistic Determination of Cross-Slip Pathway and Energitics”, Physical Review Letters, vol. 79, pp. 3676–3679,1997.

    Article  CAS  Google Scholar 

  13. S. Rao, T.A. Parthasarathy and C. Woodward, “Atomistic Simulation of Cross-Slip Processes in Model FCC Structures”, Philosophical Magazine A, vol. 79, pp. 1167–1192, 1999.

    Article  CAS  Google Scholar 

  14. T. Rasmussen, “Comment on ‘Atomistic Simulation of Cross-Slip Processes in Model FCC Structures,’” Philosophical Magazine A, vol. 80, pp. 1291–1292, 2000.

    Article  CAS  Google Scholar 

  15. T. Vegge, “Atomistic Simulations of Screw Dislocation Cross Slip in Copper and Nickel”, Materials Science and Engineering A, vol. 309–310, pp. 113–116, 2001.

    Article  Google Scholar 

  16. T. Rasmussen, T. Vegge, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Simulation of Structure and Annihilation of Screw Dislocation Dipoles”,Philosophical Magazine A, vol. 80, pp. 1273–1290, 2000.

    Article  CAS  Google Scholar 

  17. T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Determination of the Rate of Cross Slip of Screw Dislocations”, Physical Review Letters, vol. 85, pp. 3866–3869, 2000.

    Article  CAS  Google Scholar 

  18. T. Vegge, T. Rasmussen, T. Leffers, O.B. Pedersen and K.W. Jacobsen, “Atomistic Simulations of Cross-Slip of Jogged Screw Dislocations in Copper”, Philosophical Magazine Letters, vol. 81, pp. 137–144,2001.

    Article  CAS  Google Scholar 

  19. J. Bonneville, B. Escaig and J.L. Martin, “A Study of Cross-Slip Activation Parameters in Pure Copper”, Acta Metallurgica, vol. 36, pp. 1989–2002, 1988.

    Article  CAS  Google Scholar 

  20. T. Vegge, O.B. Pedersen, T. Leffers and K.W. Jacobsen, “Atomic-Scale Modeling of the Annihilation of Jogged Screw Dislocation Dipoles”, Materials Research Society Symposia Proceedings, vol. 578, pp. 217–222, 2000.

    Article  CAS  Google Scholar 

  21. T. Leffers and O.B. Pedersen, “The Activation Energy for the FCC Rolling Texture Transition and the Activation Energy for Cross Slip”, Rise-R-1308 (EN). Available electronically via http://www.risoe.dk/rispubl/AFM/ris-r-1308.htm

  22. W. Püschl, “Models for Dislocation Cross-Slip in Close-Packed Crystal Structures: a Critical Review”, Progress in Materials Science, vol. 47, pp. 415–461, 2002.

    Article  Google Scholar 

  23. T. Leffers and O.B. Pedersen, “The Activation Energy for the FCC Rolling-Texture Transition as Related to the Activation Energy for Cross Slip”, Scripta Metallurgica, vol. 46, pp. 741–746,2002.

    Article  CAS  Google Scholar 

  24. T. Leffers and O.B. Pedersen, “Can We Relate the FCC Rolling Texture Transition to Cross Slip?”, Materials Science Forum, vol. 408–412, pp. 365–370, 2002.

    Article  Google Scholar 

  25. O.B. Pedersen and A.T. Winter, “Cyclic Hardening and Slip Localization in Single Slip Oriented Copper Crystals”, Physica status solidi (a)vol.l49, pp. 281–296, 1995.

    Google Scholar 

  26. O.B. Pedersen, “A nanotheory of the intense slip localization causing metal fatigue”, Zeitschrift für Metallkunde, vol. 93, pp. 790–798,2002.

    CAS  Google Scholar 

  27. L.B. Brown,“ A dipole model for the cross-slip of screw dislocations in fee metals”, Philosophical Magazine A, vol.82, pp.1691–1711, 2002.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Leffers, T., Pedersen, O.B. (2004). Cross Slip Viewed at the Nano- and Micrometer Scale. In: Ahzi, S., Cherkaoui, M., Khaleel, M.A., Zbib, H.M., Zikry, M.A., Lamatina, B. (eds) IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials. Solid Mechanics and Its Applications, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0483-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0483-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6529-2

  • Online ISBN: 978-94-017-0483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics